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Abstract

Accurate tissue mechanical properties are essential for simulating medical devices that deform skin under suction, such as
devices for the treatment of fat, skin wounds, and vascular skin conditions. While suction-based methods exist for estimating
these properties, most rely on small apertures (under 16 mm) and do not account for anatomical variation in fat thickness.

Displacements were measured experimentally using 50 mm, 30 mm, and 16 mm circular suction apertures across a range
of applied pressures. These measurements were used to calibrate a 2D axisymmetric transient finite element model of skin,
fat, and muscle, implemented in COMSOL Multiphysics (version 6.3). The geometry was participant-specific, with layer
thicknesses obtained from ultrasound imaging. Material behavior was modeled using isotropic hyperelastic formulations: the
polynomial model for skin, the Mooney-Rivlin model for fat, and the Ogden model for muscle. Two separate inverse studies
were conducted using the Optimization Module. One optimized parameters based on displacement at a single pressure
level, while the second incorporated displacements from multiple pressure levels to minimize normalized squared error and
improve robustness.

The single-pressure inverse method produced accurate displacement predictions for the 50 mm aperture, with errors
generally below 10 percent across pressure levels. However, when applied to the 30 mm and 16 mm apertures, this
approach led to significantly higher errors, reaching up to 60 percent at the lowest pressure level. In contrast, the multi-
pressure optimization reduced these discrepancies and produced more consistent predictions across all apertures and
pressure levels, demonstrating improved robustness to nonlinear tissue behavior.

Stress analysis across skin, fat, and muscle layers showed that stress distribution varied with both aperture size and fat
thickness. Circumferential and axial stresses dominated in the skin, while the fat layer experienced lower overall stresses
due to its low stiffness, especially in shear. In the muscle, participants with thinner fat showed higher stress transmission,
emphasizing the role of fat as a mechanical buffer. These results underscore the importance of pressure range, aperture
size, and anatomical variability in suction-based modeling.

This study demonstrates that while single-pressure optimization may suffice for large apertures, using multiple pressure
levels significantly improves property estimation and displacement prediction, particularly for smaller applicators. Stress
analysis revealed that even slight differences in fat thickness significantly alter internal stress distributions, although the axial
and circumferential components vary in sensitivity. These results highlight the importance of accounting for anatomical
variability and evaluating stress components separately to improve the reliability of computational modeling of soft tissue
biomechanics in device development.
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Figures used in the abstract

Figure 1 : Numerical displacement of skin (2 mm), fat (6.3 mm), and muscle (10 mm) under a suction pressure of 203.2
mmHg applied over a 25 mm radius aperture in an axisymmetric model. A roller boundary condition was applied at the
symmetry axis (r = 0) to restrict



Figure 2 : Experimentally measured and simulated pressure-displacement curves for one participant using 50 mm (red), 30
mm (green), and 16 mm (blue) apertures. Simulations were performed using material parameters estimated by minimizing
the error at a pressure of 20

Figure 3 : Circumferential (blue), axial (orange), and shear (yellow) stress distributions at the mid-depth of the skin, fat, and
muscle layers at a pressure of 203.2 mmHg.
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