Pulsed Electrochemical Machining: A Multiphysics Model

Edmund Dickinson September 5, 2017

Precision machining and quality of surface finish are major concerns for manufacturers of metal parts. The promise of a contactless method to machine surfaces with submillimeter precision and a clean surface, on metals of almost any hardness, might seem too good to be true. However, such a method, pulsed electrochemical machining (PECM), was the focus of a detailed investigation using numerical modeling presented at the COMSOL Conference 2016 Munich.

Read More

Caty Fairclough August 15, 2017

Zone electrophoresis separates different species in a sample into distinct well-resolved peaks, giving scientists the ability to analyze substances like proteins and nucleic acids. Improving this electrophoretic separation technique requires us to accurately model the transport and separation of these species. Here, let’s look at how the COMSOL Multiphysics® software can be used to simulate the movement of species during zone electrophoresis.

Read More

Bridget Cunningham March 10, 2017

While reverse electrodialysis (RED) is a promising source of renewable energy, it can be a challenging process to analyze. The performance of RED units is affected by the physical phenomena that occur when converting salinity gradient energy into electric current. To address this, one team of researchers used a novel approach to model such systems in the COMSOL Multiphysics® software. Their multiphysics model and subsequent simulation studies provide further insight into designing and optimizing RED units.

Read More

Edmund Dickinson February 9, 2017

Electrochemical impedance spectroscopy is a versatile experimental technique that provides information about an electrochemical cell’s different physical and chemical phenomena. By modeling the physical processes involved, we can constructively interpret the experiment’s results and assess the magnitudes of the physical quantities controlling the cell. We can then turn this model into an app, making electrochemical modeling accessible to more researchers and engineers. Here, we will look at three different ways of analyzing EIS: experiment, model, and simulation app.

Read More

Bridget Cunningham December 7, 2016

Traditional lithium-ion batteries use an electrolyte based on a flammable liquid solvent, which can cause them to catch fire if they overheat. In recent years, nonflammable solid electrolytes have been investigated as an alternative to improve battery design and safety. Optimizing this technology for industrial applications, however, requires a better understanding of the electrochemical processes inside the device. Simulation serves as a valuable tool for this purpose, helping to realize the use of solid-state lithium-ion batteries in the near future.

Read More

Scott Smith August 24, 2016

Resistive and capacitive effects are fundamental to the understanding of electrochemical systems. The resistances and capacitances due to mass transfer can be represented through physical equations describing the corresponding fundamental phenomena, like diffusion. Further, when considering the resistive or capacitive behavior of double layers, thin films, and reaction kinetics, such effects can be treated simply through physical conditions relating electrochemical currents and voltages. Lastly, resistances and capacitances from external loading circuits can easily be represented in the COMSOL Multiphysics® software.

Read More

Guest Matteo Lualdi August 23, 2016

Today, guest blogger Matteo Lualdi of resolvent ApS, a COMSOL Certified Consultant, discusses the benefits of creating a simulation app to analyze a solid oxide fuel cell stack. For many businesses, numerical modeling and simulation are valuable tools at various stages of the design workflow, from product development to optimization. Apps further extend the reach of these tools, hiding complex multiphysics models beneath easy-to-use interfaces. Here’s a look at one such example: a solid oxide fuel cell stack app.

Read More

Bertil Nistad February 17, 2016

In version 5.2 of COMSOL Multiphysics, we offer a new feature for simulating corrosion in slender structures. This significantly speeds up the total time spent when working with structures such as oil platforms. By using the boundary element method (BEM) and specialized beam elements in the Current Distribution on Edges, BEM interface, there is no longer a need for a finite element mesh to resolve the whole 3D structure, saving time for large corrosion problems consisting of slender components.

Read More

Lexi Carver December 28, 2015

Corrosion is one of the most serious factors affecting the transportation industry. In an effort to minimize its impact, a German research institute and the manufacturers of Mercedes-Benz joined forces to investigate the corrosion occurring in automotive rivets and sheet metal. Using COMSOL Multiphysics simulation, they were able to study corrosion’s effects on car components.

Read More

Edmund Dickinson August 14, 2014

Diabetes is an incurable global killer: the World Health Organization estimates 350 million diabetics worldwide, with an average annual fatality rate close to 1%. Fortunately, modern medical science enables diabetics to manage their glucose levels and intake, so many countries have seen greatly reduced danger of the disease. Many diabetics must track their glucose levels throughout the day, requiring an accurate method for measuring the concentration of glucose in blood. For modern sensor designs, the method of choice is electrochemistry.

Read More

Melanie Pfaffe February 10, 2014

When designing electrochemical cells, we consider the three classes of current distribution in the electrolyte and electrodes: primary, secondary, and tertiary. We recently introduced the essential theory of current distribution. Here, we illustrate the different current distributions with a wire electrode example to help you choose between the current distribution interfaces in COMSOL Multiphysics for your electrochemical cell simulation.

Read More



1 2