How to Model Electrodynamic Magnetic Levitation Devices

Nirmal Paudel | November 28, 2016

Electrodynamic magnetic levitation can occur when there are time-varying magnetic fields in the vicinity of a conductive material. In this blog post, we will demonstrate how to model this principle with two examples: a TEAM benchmark problem of an electrodynamic levitation device and an electrodynamic wheel.

Read More

Categories

Rune Thygesen | November 22, 2016

Today, we invite guest blogger Rune Thygesen of Reelight to discuss designing a power generation source for bicycle safety lights using simulation. At Reelight, we are developing an affordable bicycle safety light that is extremely easy for the end user to install. Along with a stronger and more flexible mounting system, we needed to develop a new power generation platform. Using simulation-based design, we created a power platform that is easy to use and quick to install.

Read More

Bauke Kooger | November 8, 2016

Today, we invite guest blogger Bauke Kooger of Delft University of Technology to discuss modeling a magnetic suspension system for the Hyperloop. The Hyperloop is a proposed mode of transportation in which a vehicle, or pod, travels at the speed of sound through a low-pressure tube. At this speed, a magnetic suspension offers several advantages over systems such as air bearings or wheels. To test this, Delft’s Hyperloop team modeled their pod’s magnetic suspension in the COMSOL Multiphysics® software.

Read More

Jiyoun Munn | October 31, 2016

To keep our antenna modeling process efficient and accurate, we should start with a simple geometry and then gradually add more complex features. The final simulation needs to include enough detail to accurately represent our design, while excluding elements that needlessly increase the computational cost. To demonstrate this, we look at an anechoic chamber example, which is used to characterize antenna performance, before examining how this process applies to several antenna examples available in the COMSOL Multiphysics® software.

Read More

Categories

Jonathan Velasco | October 26, 2016

Aside from the winding type, concentrated or distributed, the logic behind the design of electrical machines is relatively similar, as it’s based on their phasor diagrams. Using an induction motor benchmark model with a concentrated winding, we’ll show you how to create selections in the COMSOL Multiphysics® software to streamline the analysis of your winding design. We’ll then demonstrate how to further advance your simulation studies by automating these processes with the Application Builder.

Read More

Bridget Paulus | October 17, 2016

Developing a device that generates nuclear fusion would provide a nearly limitless amount of clean energy on Earth. But while work on thermonuclear fusion began in the 1950s, engineers are still trying to make this goal a reality. One approach has been to use magnetic confinement devices known as tokamaks. See why a group of engineers at MIT’s Plasma Science Fusion Center (PSFC) turned to simulation to address a key challenge in tokamak design: instability due to plasma disruptions.

Read More

Yosuke Mizuyama | September 21, 2016

The Gaussian beam is recognized as one of the most useful light sources. To describe the Gaussian beam, there is a mathematical formula called the paraxial Gaussian beam formula. Today, we’ll learn about this formula, including its limitations, by using the Electromagnetic Waves, Frequency Domain interface in the COMSOL Multiphysics® software. We’ll also provide further detail into a potential cause of error when utilizing this formula. In a later blog post, we’ll provide solutions to the limitations discussed here.

Read More

Categories

Abbie Weingaertner | September 12, 2016

Polarizing beam splitters are optical devices used to split a single light beam into two beams of varying linear polarizations. These devices are useful for splitting high-intensity light beams like lasers as, unlike absorptive polarizers, they do not absorb or dissipate the energy of the rejected polarization state. See why creating a numerical modeling app offers a more efficient approach to analyzing and optimizing the design of these devices.

Read More

Bridget Cunningham | September 7, 2016

Many modern devices leverage piezoelectricity. When analyzing the design of such devices, you want to be confident in the reliability of the obtained results. By utilizing the COMSOL Multiphysics® simulation software, you can achieve accurate results quickly. To prove it to you, we have created a benchmark model of a piezoelectric transducer.

Read More

Categories

Bridget Paulus | August 9, 2016

We rely on power transformers for everyday tasks, but these devices also create a loud buzzing or humming noise. This sound comes from vibrations in different parts of the transformer and is impossible to eliminate completely. To reduce the noise, a team of engineers at ABB Corporate Research Center simulated the acoustic, electromagnetic, and mechanical behavior in their transformer systems with the COMSOL Multiphysics® software.

Read More

Bridget Paulus | August 8, 2016

Imagine a vehicle where you could simply plug in a destination and arrive without ever having to touch the steering wheel. Fully autonomous cars would revolutionize society, benefiting those who already drive and increasing the mobility of those who can’t. While technological advancements have brought us closer to such a reality, there are still many challenges to overcome. Today, we’ll explore the future of autonomous cars and what needs to happen before they can become a viable option.

Read More

Categories


Categories


Tags

1 2 3 21