Scopri come la simulazione multifisica viene utilizzata per ricerca e sviluppo

In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.


Visualizza gli articoli presentati alla COMSOL Conference 2020

Structural Mechanics and Thermal Stressesx

Modeling and Multiphysics Simulation of the Directed Energy Deposition Additive Manufacturing

P. Ansari1, C.S. Tüfekci2, M. U. Salamci3
1Gazi University, Department of Mechanical Engineering, Additive Manufacturing Technologies Application and Research Center (EKTAM), Ankara, Türkiye
2Manufacturing Technologies Center of Excellence-URTEMM A.S., Ankara, Türkiye
3Gazi University, Department of Mechanical Engineering, Additive Manufacturing Technologies Application and Research Center (EKTAM), Manufacturing Technologies Center of Excellence-URTEMM A.S., Ankara, Türkiye

In this paper, we present a study of the simulation of Directed Energy Deposition (DED) Additive Manufacturing (AM) using a multiphysics approach. We use a combination of Heat Transfer in Fluids, Solid Mechanics and Laminar Flow physics to accurately simulate the DED process. The ... Per saperne di più

Modeling of Thermal Expansion of a Material During its Cooling Using COMSOL Multiphysics®

A. CLARISSOU1, V. BRUYERE2, P. NAMY2, I. CRASSOUS1
1FRAMATOME, 60 Avenue Paul Girod, 73400 Ugine France
2SIMTEC, 5 rue Felix Poulat, GRENOBLE, FRANCE

In metallurgy, the use of numerical models is popular because of the many coupled physical phenomena that occur during the various processes. For instance, the resulting shape and metallurgical state of a material are very sensitive to changes in temperature. The drop in temperature of ... Per saperne di più

Modeling of Thermal Load and Electric Fields in Microfocus X-Ray Tubes

Dr. Vladimir Burlaka1, Thorsten Fröba1
1X-RAY WorX GmbH, Siemensstraße 26, 30827 Garbsen, Germany

The thermal load on the system components is one of the technical problems in the development of microfocus X-ray tubes. To improve their stability in long-term use, it is important to understand the physical phenomena and their influence on the system stability and filament lifetime. To ... Per saperne di più

Modelling of Thermal Stress in Yb:YAG to Quantify Depolarisation in a Nanosecond 10 J, 100 Hz Laser

G. Quinn1, M. De Vido1
1Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot, OX11 0QX, United Kingdom

The high heat loads intrinsically associated with high-energy, high repetition rate laser systems require sophisticated thermal management analyses to minimise the impact of thermal effects on optical performance. Non-uniform heat deposition in optical elements can lead to the onset of ... Per saperne di più

Multiphysics Modeling Results for the High Flux Isotope Reactor to Support its LEU Conversion

Prashant K. Jain1, Marta Sitek2
1Oak Ridge National Laboratory
2Argonne National Laboratory

Ongoing engineering design studies at Oak Ridge National Laboratory are exploring the feasibility of converting the High Flux Isotope Reactor (HFIR) from highly enriched uranium (HEU) to low-enriched uranium (LEU) fuel. HFIR is a pressurized light water-cooled and moderated research ... Per saperne di più

Numerical Simulation of the One-Way Mechanical-Electrochemical Coupling in Structural Supercapacitor

D. Peyrow Hedayati1, G. Kahlmeyer1, M. Kucher1, R. Böhm1
1Faculty of Engineering, Leipzig University of Applied Sciences, Leipzig, SN, Germany

Structural Supercapacitors (SSC) are an important group of Multifunctional Energy Storage Composites (MESC) and can potentially play a significant role in lightweight design of aerospace and automotive applications [1]. Therefore, it is important to build accurate models based on the ... Per saperne di più

Prediction of Douglas-Fir Sawn Timber Strength based on X-ray Computed Tomography and FEA

Boris Sandor1, Andreas Weidenhiller1
1Holzforschung Austria

Due to climate change impacts and the worsening growth conditions of Norway spruce (Picea abies) the species composition of European forests is being diversified, incorporating more hardwoods as well as drought-resistant softwood species, such as Douglas-fir (Pseudotsuga menziesii). As a ... Per saperne di più

Predictive Simulations of Warpage Phenomena on Arbitrarily Patterned Silicon Wafers

Filippo Sabatini1
1Politecnico di Milano, ST Microelectronics

In this simulation, we aim to comprehend the origin and mechanism of the warpage phenomenon in patterned silicon wafers, which are key components in the field of microelectronics. This issue can become more pronounced in the presence of high global density of the patterns and can lead to ... Per saperne di più

Radiation Damage in a Power Dump

P.C. Spruijtenburg1, W. Chu1
1Demcon

In applications like nuclear reactors or particle accelerators, mechanical components near a source of radiation develop radiation damage. This typically means a change in tensile properties and fracture toughness, which depends on the radiation dose (commonly measured in ‘displacements ... Per saperne di più

Simulation Based Design of a Bladeless Centrifugal Flow Compressor

Ingo Schaarschmidt1, Philipp Steinert1, Andreas Schubert1
1Chemnitz University of Technology, Chemnitz, Saxony, Germany

The bladeless centripetal flow turbomachinery or disc turbine was invented by Nikola Tesla with the aim to realize a turbine with higher efficiency and simplicity compared to the state of the art at that time. Unlike conventional turbines, the disc turbine does not use rotor blades. ... Per saperne di più