Presentazioni e Articoli Tecnici

In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Modelling of Thermally Induced Electrical Instabilities in Intestine using COMSOL Multiphysics®

A. Gizzi[1][3], C. Cherubini[1][2], S. Migliori[1][3], and S. Filippi[1][2]
[1]Nonlinear Physics and Mathematical Modeling Lab, Engineering Faculty, University Campus Bio-Medico, Roma, Italy
[2]International Center for Relativistic Astrophysics, University of Rome La Sapienza, Roma, Italy
[3]Alberto Sordi Foundation, Research Institute on Aging, Roma, Italy

Postoperative or paralytic Ileus (PI) is a temporary aftermath of major abdominal surgeries. PI prevents the passage of food throughout the lumen leading to bloating, distension, emesis and pain. A plausible mathematical model for this phenomenology physiologically fine tuned including thermal variations, is presented here. Using COMSOL Multiphysics the existing intestinal ionic model have been ...

Computer Modelling of Deformable non-Newtonian Flow using COMSOL Multiphysics

H.A. Lecuyer[1], F.H. Bertrand[1], P.A. Tanguy[1], J.P. Mmbaga[2], and R.E. Hayes[2]
[1] Ecole Polytechnique , Montreal
[2] University of Alberta, Edmonton

This presentation is concerned with the modelling of deformable non-Newtonian Flow using COMSOL Multiphysics. This general modelling approach has more concrete applications such as paper coating in a metering size press, meniscus location by PIDS to mention a few.

Numerical Validation of the Efficiency of Dual-Frequency Radiofrequency Ablation

A. Candeo[1] and F. Dughiero[1]
[1]Department Electrical Engineering, University of Padova, Padova, Italy

Radiofrequency Ablation (RFA) represents a valid alternative for treating liver metastases in medically complicated patients. Conventional devices currently operate at 500 kHz, due to good conducting properties of tissues. However, the use of lower frequencies (i.e. 20 kHz) has been recently reported to enhance the treatment effectiveness, due to a more pronounced difference in electrical ...

Compressional Waves Generation in Droplets of Water Deposited on a Quartz Crystal

G. Couturier, R. Boisgard, C. Jai, and J.P. Aimé
Université Bordeaux

In this paper, we investigate the compressional wave generation in droplets and use different techniques to correlate the compressional wave generation to the shape of the droplets. Results show a good correlation between eigenmodes predicted by the theory and those experimentally observed.

Passive and Active Deformation Processes of 3D Fibre-Reinforced Caricatures of Cardiovascular Tissues

A. Di Carlo[1], P. Nardinocchi[2], T. Svaton[3], and L. Teresi[1]

[1]Modelling and Simulation Lab, Università Roma Tre, Roma, Italy
[2]Dept. of Structural & Geotechnical Engineering, Università di Roma La Sapienza, Roma, Italy
[3]Dept. of Mathematics, University of West Bohemia, Pilsen, Czech Republic

In this paper, we present a mathematical model of contractile elastic solids meant to simulate various districts of the cardiovascular system, and based on the concepts of active deformation and embedded muscle fibres. Specifically, here we deal with the modeling of the gross mechanics of the Left Ventricle (LV) which is strictly related to its pump function. As is well known, the effectiveness ...

Explicit Dosimetry for Photodynamic Therapy; Singlet Oxygen Modeling based on Finite-Element Method

Ken Kang-Hsin Wang[1], and Timothy C. Zhu[1]
[1]Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

Singlet oxygen (1O2) is the major cytotoxic agent during type-II photodynamic therapy (PDT). The production of 1O2involves the complex reactions among cancer agent, oxygen molecule, and treatment laser light. The light propagation in tumor tissue is described by the diffusion equation. In this work, an optimization routine is developed to fit the [1O2]rx profile to the simulated necrosis ...

Experimental and Theoretical Studies on Air Exchange in Portable Devices

M. Olin [1], L. Laakso [1], J. Hannula [2], T. Galkin [2], K. Väkeväinen [2], and K. Hartikainen [3]
[1] University of Helsinki, Finland
[2] Nokia Corporation, Finland
[3] Ambertec Oy, Finland

In this paper, we perform a leakage analysis fitted to approximate analytical diffusion and air exchange models, by the helium injection method for one mobile phone type. In order to extend the applicability of our models, we developed a more complicated numerical model for diffusion, thermal conduction and free convection inside the phone.

Modeling Heat Barrier Efficiency of Flame Retarded Materials

S. Bourbigot, M. Jimenez, and S. Duquesne
Laboratoire Procédés d’Elaboration des Revêtements Fonctionnels, Ecole Nationale Supérieure de Chimie de Lille, Lille

In this paper, different approaches for modeling heat transfer in materials are examined: Heat anisotropy in styreneacrylonitrile copolymer provided by the nanodispersion and the orientation of single wall carbon nanotubes Heat protection of aluminum plate using nonwoven material made with high performance fibers Fire protection using intumescent paint on steel plate. It is shown that ...

Modeling of Nerve Stimulation Thresholds and Their Dependence on Electrical Impedance with COMSOL

P. Krastev[1], and B. Tracey[1]
[1]Neurometrix, Inc., Waltham, Massachusetts, USA

Nerve localization is important for applications in regional anesthesia. Localization is achieved by stimulating the nerve with an electric field produced by a current from a needle inserted into the body of the patient, close to the target nerve.  Modeling of the electric field in close proximity to the nerve may help to explain observed variations in threshold currents and can help to ...

Modeling the Coupled Mass Transfer Phenomena During Osmotic Dehydration of Fresh and Frozen Mango Tissues

J. Floury[1], Q.T. Pham[2], and A. Le Bail[3]
[1] UMR STLO–INRA–Agrocampus
[2] School of Chemical Engineering and Industrial Chemistry, UNSW
Sydney, Australia.
[3] UMR CNRS GEPEA–ENITIAA, Nantes

In this paper, we present a mathematical model for simulating the mass transfer, during the osmotic dehydration of mango cubes. The mass balance equation for the transport of each constituent is established separately for intracellular and extracellular volumes but accounts for the mass exchange across the cell membrane and the shrinkage of whole tissue.

Quick Search

2661 - 2670 of 3230 First | < Previous | Next > | Last