Presentazioni e Articoli Tecnici

In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Finite Element Modeling of the Stress Field in a Cell-Seeded Microchannel

G. Zhu, and Y. Li
Lawrence Technological University, Southfield, MI, USA

Fluids used in biomedical microelectromechanical systems (BioMEMS) devices often exhibit very different flow behavior from those in bulk solutions, which in turn affects the behavior of cells and biomolecules in the device. In this work, we investigate an integrated microfluidic system for living cell culture and assay. The system can be used as a generic platform to study the behavior of ...

Single Crystal Diamond NEMS Switch

M. Liao
Optical and Electronic Materials Unit
National Institute for Materials Science

A single-crystal diamond NEMS switch was fabricated while batch production of SCD MEMS/NEMS structures were developed. The diamond NEMS switches exhibit high performance with respect to high controllability, high reproducibility, and good reliability. Modeling and simulations were made that were consistent with experiments.

Applied Multiphysics in Thermoresistive and Magnetoresistive Sensor Models

R.W. Pryor
Pryor Knowledge Systems, Inc.
COMSOL, Certified Partner

Efficient, effective, and functional operation of autonomous systems requires a comprehensive real-time understanding, by those systems, of the embedding environment. This paper presents a brief overview of the multiphysics considerations involved in the development of models for thermoresistive and magnetoresistive sensors systems.

Magnetic Ratchet

A. Auge, F. Wittbracht, A. Weddemann, and A. Hütten
Department of Physics, University of Bielefeld, Germany

Transport phenomena in spatially periodic magnetic systems, in particular the directed transport of magnetic beads in a so called magnetic ratchet (Brownian motor) are considered. Simulations are carried out to test and optimize this system, where the Smoluchowski equation with flux terms for the magnetic and gravitational force is used. Furthermore, experiments are carried out to verify the ...

Micro Cooling of SQUID Sensor

B. Ottosson[1], Y. Jouahri[2], C. Rusu[1], and P. Enoksson[2]
[1]Imego AB, Gothenburg, Sweden
[2]Chalmers University of Technology, Gothenburg, Sweden

The objective of this work has been to realize a feasibility study of a cooling device for a SQUID sensor using liquid nitrogen flowing through micro channels. The design consists of an epoxy cylindrical vacuum vessel skewed by a silicon microchannel heat sink. The SQUID sensor is situated directly on top of the microchannel heat sink. The device is used at room temperature and should be able to ...

Antenna and Plasmonic Properties of Scanning Probe Tips at Optical and Terahertz Regimes

A. Haidary[1], P. Grütter[1], Y. Miyahara[1]
[1]Physics Department, McGill University, Montreal, QC, Canada

A wide variety of near-field optical phenomena such as apertureless near-field scanning microscopy (ANSM) at optical and terahertz (THz) regimes and surface enhanced Raman scattering relies on the electric field enhancement at the end of a sharp tip. Achieving and controlling this electric field enhancement is a key challenge for a wide range of applications such as surface modification, data ...

FEM Study on Contactless Excitation of Acoustic Waves in SAWDevices

A. K. Namdeo[1], N. Ramakrishna[2], H. B. Nemade[1,2], and R. P. Palathinkal[1]

[1] Department of Electronics and Communication Engineering, Indian Institute of Technology Guwahati, Assam, India
[2] Centre for Nanotechnology. Indian Institute of Technology Guwahati, Assam, India

In this paper a finite element method(FEM) study of a surface acoustic wave (SAW)device excited by electrostatic coupling method is performed by using COMSOL Multiphysics. We have modeled a Rayleigh wave type SAW device by choosing YZ Lithium niobate as the substrate. The effect of external radio frequency (RF) field to the SAW device is analyzed. The effect of distance between the contactless ...

High Coupling Factor Piezoelectric Materials for Bending Actuators: Analytical and Finite Elements Modeling Results

I.A. Ivan[1], M. Rakotondrabe[1], and N. Chaillet[1]
[1]FEMTO-ST Institute, University of Franche-Comte, Besançon, France

New giant piezoelectric factor materials such as PMN-PT and PZN-PT were researched during the last decade and are actually becoming commercially available. As they seem very attractive for actuator designs, we studied their potential in replacing PZT ceramics. In a first comparative approach, we tested a series of classic rectangular composite bimorph structures of different combinations of ...

Zone sculpting using partitioned electrokinetic injections

Narovlyansky, M.1, Squires, T.M.2, Whitesides, G.M.1
1 Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, U.S.A.
2 Departments of Physics and Applied Mathematics, Caltech, Pasadena, CA

In electrokinetic separations, the narrower and more homogeneous the initial sample plug, the higher the ultimate resolution of the separation. Here we describe a general and versatile method to sculpt low-dispersion, high-fidelity sample zones in microfluidic devices for high resolution electrokinetic separations. In a simple channel intersections microfabricated partitions act to reduce each ...

Viscous damping of a periodic perforated MEMS microstructure when the Reynolds’ equation cannot be applied: Numerical simulations

D. Homentcovschi[1], and R.N. Miles[1]
[1]Department of Mechanical Engineering, SUNY Binghamton, NY

This paper develops a computational model for determining the total damping coefficient for a unit cell of a MEMS microscale device containing a repetitive pattern of holes. The basic cell of the microstructure is approximated by an axi-symmetric domain and the velocity and pressure fields are determined from solutions of the Navier-Stokes equations using the finite element software package ...

Quick Search