Presentazioni e Articoli Tecnici

In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

COMSOL 2D Simulation of Heavy Oil Recovery by Steam Assisted Gravity Drainage

I. I. Bogdanov, K. El Ganaoui, and A. M. Kamp
Centre Huile Lourde Ouvert et Expérimental (CHLOE), Pau, France

Multiphysics flexibility and computational performance of COMSOL gave us the idea to model SAGD (steam assisted gravity drainage), one of the popular thermal methods of oil recovery. The modeling is far from straightforward and requires solving a system of non-linear PDEs for thermal multiphase flow under conditions of thermodynamic (phase) equilibrium. This paper presents the main results of our ...

Coupling Multiphysics with Geochemistry: The COMSOL-PhreeqC Interface

A. Nardi[1], L. M. de Vries[1], P. Trinchero[1], A. Enrique Idiart [1], J. Molinero[1]
[1]Amphos 21, Barcelona, Spain

Phreeqc is a program for simulating chemical reactions and 1D transport processes in aqueous systems. Several couplings between conservative transport codes and PHREEQC already exist. The methodology used here is based on the operator splitting concept: the transport of the aqueous components and the chemical reactions are solved in two different steps. The Java interface uses the COMSOL Java ...

Numerically Generated g-functions for Ground Coupled Heat Pump Applications

J. Acuna[1], M. Fossa[2], P. Monzó[1]
[1]KTH Energy Technology, Stockholm, Sweden
[2]Dime, University of Genova, Genova, Italy

Ground-coupled heat pumps (GCHP) are successfully installed since at about 20 years in many countries to fulfill space conditioning requirements in building applications. In most cases the heat pump is connected to a system of vertical ground heat exchangers (as illustrated in Figure 1) where a fluid is circulated inside a system of pipes inserted in a deep borehole drilled in the soil. Drilling ...

Coupling Heat Transfer in Heat Pipe Arrays with Subsurface Porous Media Flow for Long Time Predictions of Solar Rechargeable Geothermal Systems

P. Oberdorfer[1], R. Hu[1], M. Azizur Rahman[1], E. Holzbecher[1], M. Sauter[1], P. Pärisch[2]
[1]Applied Geology, Geoscience Centre, University of Göttingen, Göttingen, Germany
[2]Institute for Solar Energy Research Hameln/Emmerthal (ISFH), Emmerthal, Germany

An increased share of renewable energies is regarded as an integral part of a strategy towards a sustainable future. With regard to the heat supply sector this may be achieved using solar thermal collectors or heat pump systems with borehole heat exchangers. During the last years solar thermal and geothermal systems have generally been installed separately. Now, several proposals are discussed in ...

CO2 Storage Trapping Mechanisms Quantification

A. Nardi[1], E. Abarca[1], F. Grandia[1], J. Molinero[1]
[1]Amphos 21, Barcelona, Spain

The capture and storage of CO2 in deep geological formations is one of the proposed solutions to reduce CO2 emissions to the atmosphere. CO2 is injected as a supercritical fluid deep below a confining geological formation that prevents its return to the atmosphere. In general, four trapping mechanisms are expected, which are of increasing importance through time: (1) structural, (2) residual ...

Finite Element Solution of Nonlinear Transient Rock Damage with Application in Geomechanics of Oil and Gas Reservoirs

S. Enayatpour[1], T. Patzek[1]
[1]The University of Texas at Austin, Austin, TX, USA

The increasing energy demand calls for advances in technology which translate into more accurate and complex simulations of physical problems. Understanding the rock damage is essential to understanding the geomechanics of hydrocarbon reservoirs. The fragile microstructure of some rocks makes it difficult to predict the propagation of fracture in these rocks, therefore a mathematical model is ...

Full Coupling of Flow, Thermal and Mechanical Effects in COMSOL Multiphysics® for Simulation of Enhanced Geothermal Reservoirs

D. Sijacic[1], P. Fokker[1]
[1]TNO, Utrecht, The Netherlands

The effective modeling of enhanced geothermal systems (EGS) requires the coupling of geomechanics, fluid flow and thermal processes. An understanding of the complete system with these coupled processes is vital, not just for reservoir stimulation targeted at enhancing reservoir performance, but also for the understanding, prediction and prevention of induced seismicity. Thermal effects however ...

Oscillatory Thermal Response Test (OTRT) – An Advanced Method for Gaining Thermal Properties of the Subsurface

P. Oberdorfer[1]
[1]Georg-August-Universität Göttingen, Göttingen, Germany

Thermal Response Tests (TRTs) are the state-of-the-art method to obtain the thermal conductivity of the subsurface in the nearby ambience of a borehole heat exchanger (BHE). The results of TRTs are used to determine the necessary depth of the borehole and to make long time predictions about the potential of heat extraction. For a TRT, a constant heat load is injected into the subsurface and the ...

Multiphysics Between Deep Geothermal Water Cycle, Surface Heat Exchanger Cycle and Geothermal Power Plant Cycle

L.W. Wong[1]
[1]International Centre for Geothermal Research, Helmholtz Centre Potsdam, GFZ German Research Centre For Geosciences, Telegrafenberg, Potsdam, Germany

Within the framework of Groß Schönebeck project in the North German Basin of Germany, multiphysics between deep geothermal reservoir, boreholes, heat exchangers and power plant is crucial to study lifecycle behavior of each component thereafter a later coupling to study lifecycle and recovery of the overall geothermal system. Study is divided into geothermal water cycle, surface heat exchanger ...

Numerical Model for Leaching and Transporting Behavior of Radiocesium in MSW Landfill

H. Ishimori[1], K. Endo[2], H. Sakanakura[2], M. Yamada[2], M. Osako[2]
[1]Ritsumeikan University, Kusatsu, Shiga, Japan
[2]National Institute for Environmental Studies, Tsukuba, Ibaraki Prefecture, Japan

This paper presents the numerical simulation model for radiocesium leaching and transporting behavior in municipal solid waste (MSW) landfill and discusses on the design for the required geometry and properties of the impermeable final cover and the soil sorption layer, which work for containment of hazardous waste such as radiocesium-contaminated MSW generated by Fukushima Daiichi nuclear ...

Quick Search