Presentazioni e Articoli Tecnici

In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Effect of S-p Relation Model on DNAPL Migration Simulation Result

H. Ishimori[1], and K. Endo[1]
[1]National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan

To consider effective counter measures against ground water contaminated with dense non-aqueous phase liquids (DNAPLs) such as chlorinated solvents, it is first important to understand the mechanism of their migration in heterogeneous aquifer. In addition, numerical analysis models to simulate such a complex migration in heterogeneous aquifer are required. The displacement pressure, which is ...

Geodynamic Models of the Vøring Volcanic Margin

T. Pedersen
Institute for Energy Technology, Kjeller, Norway

Volcanic margins are characterized by excessive magmatic activity. One of the most studied volcanic margins is the Vøring margin, offshore mid-Norway. The large volumes of magmatic rocks found there are believed to have been produced by the melting of an abnormally hot mantle. We use COMSOL Multiphysics to investigate the hypothesis that the source of this thermal anomaly was a mantle ...

Modeling Geophysical Fluid Flows Using COMSOL: Working Towards a Hydrodynamic Model of the Chesapeake Bay

M. Boe, R. Malek-Madani, D. R. Smith, and M. E. C. Vieira
United States Naval Academy, Annapolis, MD, USA

The outline for this presentation is:Chesapeake Bay BasicsMathematical FrameworkLinear Western Intensification Models -Stommel (1948), Munk (1950)Non-linear equations solved in rectangular geometriesThree-dimensional Chesapeake Bay bathymetry attempts

Channels and Melting in Deformable Porous Media

S. L. Butler

Department of Geological Sciences, University of Saskatchewan, SK, Canada

Partial melting occurs beneath mid-ocean ridges in Earth's mantle and the resulting liquid migrates to the surface to form a new oceanic crust. In this system, mass can be exchanged between the liquid and solid phases through melting and solidification and, at the high temperatures and pressures associated with the Earth's interior, the solid matrix deforms through the process of compaction, ...

Modelling the Thermal Impact of a Repository for High-Level Radioactive Waste in a Clay Host Formation

X. Sillen
Belgian Nuclear Research Centre (SCK-CEN), Waste & Disposal Department, Mol, Belgium

Disposal in deep clay geological formations is one of the promising options for disposal of high-level radioactive waste. Yet, they can generate considerable amounts of heat as a side effect of radioactive decay. This paper shows how COMSOL Multiphysics has been used to evaluate the physical impacts of the heating on the geological media around a deep disposal system. The software was found ...

Coupling Hydrodynamics and Geophysics with COMSOL Multiphysics: First Approach and Application to Leachate Injection in Municipal Waste Landfills

C. Duquennoi[1], S. Weisse[1], R. Clement[1], and L. Oxarango[2]
[1]Cemagref, HBAN research unit, Antony, France
[2]LTHE, Grenoble, France

The efficiency of bioreactor lanfills depends on a homogeneous distribution of leachate in the waste body. Therefore, optimisation of leachate injection systems is a challenging issue for operators. Most studies have shown that surface Electrical Resistivity Tomography (ERT) can be a suitable method to study moisture distribution (2D and 3D). But resistivity inversion models used to date are ...

Designing Materials for Mechanical Invisibility Cloaks

P. Olsson[1], F. Larsson[1], A. Khlopotin[1], S. Razanica[1]
[1]Chalmers University of Technology, Gothenburg, Sweden

In solid mechanics, there is considerable interest in achieving “invisibility”. The applications in mechanics include protection of structures and parts of structures from potentially harmful transient waves and steady state vibrations. A suggested large scale application is that protection against seismic waves from earthquakes could be achieved by using cloaking to re-route the waves around ...

Viscoelastic Deformation of the Alaskan Crust and Upper Mantle Subsequent to Regional Earthquakes

Boyd, O.S.
U.S. Geological Survey, Golden, Colorado

Estimates of the probability of earthquakes in Alaska are improved through a finite element, viscoelastic analysis of the evolution of stress in the Earth’s crust and upper mantle. A solution to the problem is addressed through multiple FEMLAB applications, two for each subdomain, where each subdomain is a fault bounded block. The first application models the elastic response and sets up the ...

Assessment of Spatial Variably Saturated Flow by Irrigation Moisture Sensors in 2-Dimensions using the COMSOL Multiphysics 4.1

A. Boluwade, and C. A. Madramootoo
Bioresources Engineering, McGill University
Ste. Anne De Bellevue, QC

This paper reports on the application of COMSOL Multiphysics’ Richard\'s Equation Interface in the assessment of irrigation moisture sensors for detecting the level of water saturation in a spatial variably saturated soil. The Richard\'s Equation (in COMSOL) provides the interface which automates the van Genuchten equation. A hypothetical soil column 4m by 4m was set up with seven irrigation ...

Upscaling of Heterogeneous Rock Properties via a Multiscale Image to Simulation Approach

S. Zhang[1], M. Pal[2], P. Barthelemy[1], M. Lei[1]
[1]Visualization Sciences Group, Burlington, MA, USA
[2]Shell International Exploration and Production, Rijswijk, The Netherlands

The mass and recoverability of oil and gas in unconventional reservoirs strongly depend on the understanding the petrophysical properties of the rocks at a large range of scales. Three-dimensional imaging is capable of unveiling the detailed microstructures within the rocks down to the nanometer scale. Using a multiscale imaging protocol, a Devonian shale rock sample with heterogeneities is ...

Quick Search