Presentazioni e Articoli Tecnici

In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Benchmark Comparison of Natural Convection in a Tall Cavity

H. Dillon[1]
[1]Department of Mechanical Engineering, University of Washington, Seattle, Washington, USA

A comparison of the commercial code COMSOL is performed with the bench-mark solutions provided by the literature for a tall, differentially heated rectangular cavity for aspect ratios of 8, 15, 20, and 33. At small Rayleigh numbers the flow is dominated by conduction. As the Rayleigh number is increased the flow becomes unstable, first resulting in multicellular secondary flow patterns, and then ...

Study of ER Non-equilibrium Behavior with COMSOL

L. Zhou
Fudan University, Shanghai, China

COMSOL Multiphysics is a powerful tool in theoretical study. Lei Zhou, Jiping Huang and other professors in Physics Department, Fudan University have achieved some exciting results of soft, tunable metamaterials. We use it to study non-equilibrium behavior of rhoeological (ER) fluids and polar molecule dominated rheological (PM-ER) fluids. Numerical solutions using the Onsager’s principle would ...

Numerical Simulation of Granular Solids’ Behaviour: Interaction with Gas

A. Zugliano[1], R. Artoni[2], A. Santomaso[2], and A. Primavera[1]
[1]Danieli & C. Officine Meccaniche S.p.a., Buttrio, UD, Italy
[2]DIPIC, Università di Padova, Padova, Italy

In previous works a dissipative hydrodynamic model was used to simulate the behavior of a dense granular solid flowing through silos with simple geometries or with internal devices, showing good agreement with experimental results. That model has been upgraded taking into account the interaction between the solid itself and a nonreactive gaseous stream flowing countercurrent through it. This ...

Numerical Simulation of Fluid Dynamic Behaviour in a Fuel Injector with Restricted Flow

G. Ovchinnikov1, and V. Ovchinnikov2
1Laboratory of Internal Combustion Engines, Vladimir State University, Vladimir, Russia
2Micro and Nanofabrication Centre, Helsinki University of Technology, Finland

Electronic fuel injectors, widely used for gasoline spark ignition engines, are characterized by the fact that the volumetric efficiency, response time and spray pattern drastically change due to build up of deposits in the fluid-flow channels. This study is intended to describe the effect of channel shape and needle valve lift on the characteristics of a fuel flow in the pintle-type injector ...

Two-Phase Modeling of Gravity Drainage of Bitumen from Tar Sand Using In-Situ RF Electrical Heating

A. Hassanzadeh
Pyrophase Inc., Chicago, IL, USA

In-situ electrical heating technologies are among the most recent technologies used for bitumen recovery from tar sand and oil shale. These technologies have limited environmental impact because there is little disturbance of the land, and water and solvents are not used. Two-phase movement of bitumen and air in tar sand porous deposit is modeled using COMSOL Multiphysics. A system of non-linear ...

Microfluidic Design of neuron-MOSFET based on ISFET

A. Jain[1], and A. Garg[2]
[1]BITS Pilani, Goa Campus, India
[2]Bhartiya Vidyapeeth College, New Delhi, India

An ISFET is an ion-sensitive field effect transistor used to measure ion concentrations in a solution; when the ion concentration changes, the current through the transistor will change accordingly. Here, the solution is used as a gate electrode. A voltage between substrate and the oxide surfaces arises due to an ions sheath. The surface hydrolization of the OH groups of the gate materials varies ...

Three Dimensional Numerical Study of the Interaction of Turbulent Liquid Metal Flow with an External Magnetic Field

G. Pulugundla[1], M. Zec[2], and A. Alferenok[3]
[1]Institute of Thermodynamics and Fluid Mechanics, Ilmenau University of Technology, Ilmenau, Germany
[2]Department of Advanced Electromagnetics, Ilmenau University of Technology, Ilmenau, Germany
[3]Electrothermal Energy Conversion Group, Ilmenau University of Technology, Ilmenau, Germany

Lorentz Force Velocimetry (LFV) is a non-contact measurement technique used to determine flow rates in electrically conducting fluids by exposing the flow to an external magnetic field and measuring the Lorentz force acting on the magnet system. Typically, for LFV applications real and complex permanent magnet systems with inhomogeneous magnetic fields interact with the fluid. In this paper, ...

Improvements on Liquid Cyclotron Target Loading/Unloading System Using COMSOL Multiphysics®

F. Alrumayan[1], A. Alghaith[1], J. Schneider, [1], M. Ahmed [1], M. Al-Qahtani[1]
[1]King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia

A 3D model was developed using COMSOL Multiphysics® to study the flow dynamics of the water inside the geometry of the [13N] Ammonia target for medical application . The image attached shows a 3D model of the target. A significant improvement was noted after modifying the geometry as suggested by the model and delivery time of radioactive solution was dramatically reduced. Water and aluminum ...

Heat Transfer Effects in a Water Calorimeter for Measuring the Absorbed Dose of Therapy-Level Radiation Beams

R. E. Tosh, and H. H. Chen-Mayer
National Institute of Standards and Technology, Gaithersburg, MD, USA

Water calorimetry that directly measures the temperature rise (at the mK level) due to radiation heating is used as a primary standard for therapy-level gamma-radiation beams. The temperature rise is measured at a given point in space where the spatial distribution of the absorbed dose is non-uniform, and therefore is subject to heat conduction and convection distortions that must be corrected to ...

COMSOL Grab Bag: How to Use a Versatile CFD Code to Model Interesting Problems from Cryogenic Storage to Biofuel Production

Emily Nelson
Senior Research Engineer,
NASA Glenn Research Center, Cleveland, OH, USA

Emily Nelson received her PhD in Mechanical Engineering from the University of California at Berkeley. She is a senior research engineer at NASA Glenn Research Center and specializes in the formulation and solution of problems in microgravity science, multiphase flow, porous media, risk analysis, and gravitational biology. This leads her to fundamental and applied approaches on a range of issues ...

Quick Search