Presentazioni e Articoli Tecnici

In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

On The Purification Of Waste Waters Using Multi-Bore Filters: Simulation Of A Long-Term Filtration Stage

I. Borsi
Dipartimento di Matematica U. Dini, Universita' di Firenze, Italy

We present the progress of the simulation activity we are carrying out within the PURIFAST LIFE+ project. We first present the model we formulated to describe the macroscopic effects of the filtration process taking place in a multi-bore filter, focusing on the fouling phenomenon. In membrane-based filters the fouling phenomenon is the major reason of a decreasing filtration efficiency. ...

Modeling of Drops Spreading on Random Surfaces

J. Frassy1, C. Lecot2, M. Murariu3, C. Delattre1, and A. Soucemarianadin1
1Université Joseph Fourier, Grenoble, France
2Université de Savoie, Le Bourget-du-Lac, France
3LETI, CEA, Grenoble, France

We present simulations of drops spreading on random surfaces with either chemical or topographical heterogeneities. All the computations are made within the framework of the lubrication approximation. The droplet height is the solution of a time-dependent nonlinear fourth order partial differential equation, which is solved using COMSOL. Fast Fourier Transform (FFT) together with an appropriate ...

Multiphysics Modelling in the Electromagnetic Levitation and Melting of Liquid Metals

A. A. Roy, V. Bojarevics, and K. Pericleous
University of Greenwich
London, UK

The aim of this article is to demonstrate the capability of the software for predicting free-surface motion and internal fluid flow in an electromagnetically levitated sample of liquid metal. Multiphysics solutions which demonstrate the usefulness of Comsol as a powerful MHD simulation tool have been generated to two industrial problems using the ALE moving-mesh module in combination with the ...

Multiphysics Simulation of a Circular-Planar Anode-Supported Solid Oxide Fuel Cell

K. Daneshvar[1], A. Fantino[1], C. Cristiani[1], G. Dotelli[1], R. Pelosato[1], M. Santarelli[2]
[1]Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Milano, Italy
[2]Politecnico di Torino, Dipartimento di Energetica, Torino, Italy

A 2D isothermal axisymmetric model of an anode-supported Solid Oxide Fuel Cell (SOFC) has been developed. Also a parametric analysis to find the effect of important parameters on the cell performance has been done. This simulation has been carried out at 1 atm and 1073 K. The PEN materials are traditional ones: Ni-YSZ/YSZ/LSM-YSZ as anode, electrolyte and cathode respectively.The developed model ...

3-D COMSOL Analysis of Extruder Dies

E. Solomon[1] and V. Mathew[1]
[1]Arcada University of Applied Sciences, Espoo, Finland

Three-dimensional flow analysis was performed by using COMSOL Multiphysics Chemical Engineering Module for the purpose of analyzing the flow properties and finding out the operating points of a test domain. Using material property table for an exemplary melt of LDPE (Low-Density Polyethylene), the logarithmic viscosity-shear rate graph was plotted and fitted to the 4–constant modified Carreau ...

3D Modeling of Fracture Flow in Core Samples Using ?-CT Data

S. Hoyer[1], U. Exner[2], M. Voorn[1], A. Rath[3]
[1]Department of Geodynamics and Sedimentology, University of Vienna, Austria
[2]Museum of Natural History, Vienna, Austria
[3]OMV ESG-D Production Geology, Vienna, Austria

Knowledge on flow behavior in fractured reservoir rocks is of great interest in petroleum engineering as well as for geothermal assets. Due to the big difference of magnitude (fracture aperture: ~?m, lateral extension of reservoirs ~km), modeling of discrete fracture flow is not practicable on the reservoir scale, so a Darcy (or Brinkman) approximation has to be found. The key task is to find ...

Modeling Inertial Focusing in Straight and Curved Microfluidic Channels

J. Martel[1], N. Elabbasi[2], D. Quinn[2], J. Bergstrom[2], M. Toner[1]
[1]BioMEMS Resource Center, Massachusetts General Hospital, Boston, MA, USA
[2]Veryst Engineering, Needham, MA, USA

Inertial focusing is a promising microfluidic technique for separating and concentrating cells of interest, processes routinely utilized in many medical procedures. This phenomenon is characterized by suspended particles in a flow spontaneously migrating across streamlines to equilibrium positions within a channel cross-section. We developed CFD models in COMSOL Multiphysics® to predict the ...

Simulations of Scanning Electrochemical Microscopy Experiments in Pure Negative and Positive Feedback Mode with Ring Microelectrodes

J. Mauzeroll[1], M. Mayoral[1], and D. Fabre[1]
[1]Department of Chemistry, Université du Québec à Montréal, Montreal, Quebec, Canada

Scanning electrochemical microscopy (SECM) is a powerful tool recently developed for studying structures and processes in micrometer and submicrometer sized systems. It can probe electron, ion, and molecule transfers, and other reactions at solid-liquid, and liquid-liquid, interfaces . This versatility allows for the investigation of a wide variety of processes, from metal corrosion to metabolism ...

Helical Coil Flow: A Case Study

M. Cozzini[1]

[1]Renewable Energies and Environmental Technologies Research Unit, Fondazione Bruno Kessler, Povo, TN, Italy

Stationary flow configurations in curved pipes constitute an important subject from both the theoretical and the practical point of view. A typical application concerns the calculation of secondary flow effects on the thermal efficiency of heat exchangers. Motivated by a similar problem, this paper investigates the flow patterns in a helical duct of non trivial cross section. The considered ...

Modeling Contact Line Dynamics in Evaporating Menisci

J. Plawsky[1], A. Chatterjee[1], and P.C. Wayner Jr.[1]
[1]Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA

The Constrained Vapor Bubble is a fundamental fluid mechanics experiment that is scheduled to run aboard the International Space Station starting in August 2009. The experiment is focused on looking at evaporation and condensation processes at the contact line, where vapor, liquid and solid meet. Our goal is to understand how processes that occur on the macroscale affect the transport processes ...

Quick Search