Presentazioni e Articoli Tecnici

In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Hierarchical Modeling of Polymer Electrolyte Membrane Fuel Cells

J. Dujc[1], J.O. Schumacher[1]
[1]Zurich University of Applied Sciences (ZHAW), Institute of Computational Physics (ICP), Winterthur, Switzerland

A finite element model of a polymer electrolyte membrane fuel cell (PEMFC) is described in this paper. We divide the PEMFC into two separate and parallel 2D regions which are connected by the 1D regions representing the membrane electrode assembly (MEA). COMSOL Multiphysics® was used as a development tool for hierarchical 1D MEA models. Here we present a 1D model that is based on seven governing ...

Numerical Simulation of the Electrical Double Layer Based on the Poisson-Boltzmann Models for AC Electroosmosis Flows

P. Pham1, M. Howorth1, A. Planat-Chrétien1, and S. Tardu2
1Département des microTechnologies pour la Biologie et la Santé, CEA/LETI, Grenoble, France
2LEGI, Grenoble, France

In this paper, the analytical validation of Poisson-Boltzmann (PB) equation computed with COMSOL Multiphysics in the case of a polarized surface in contact with an electrolyte, is first presented.COMSOL Multiphysics algorithms easily handle the highly nonlinear aspect of the PB equation. The limitations of the PB model, that considers ions as point like charges, are outlined. To account for the ...

The Fast Model for Ionic Wind Simulation

A. Samusenko[1], Yu. Stishkov[1], P. Zhidkova[1]
[1]Saint Petersburg State University, Research and Educational Center “Electrophysics”, St Petersburg, Russia

Ionic wind is the gas flow induced by the corona discharge. Ions produced by corona are accelerated by electric field and transfer their momentum to neutral molecules. Using ionic wind one can convert electric energy to kinetic energy of air flow almost directly. The phenomenon of ionic wind finds applications in electrostatic precipitators and ionizers. It is difficult to solve the complete ...

Modeling Galvanic Corrosion

E. Gutierrez-Miravete[1], M. Turner[2]
[1]Rensselaer at Hartford, Hartford, CT, USA
[2]General Dynamics-Electric Boat, Groton, CT, USA

Galvanic corrosion is encountered in marine applications because one often has dissimilar metal joints and seawater acts as an electrolyte. One metal acts predominantly as anode and undergoes material dissolution while the other acts predominantly as cathode and is the site where a cathodic reaction takes place. Assuming a stagnant electrolyte, the equation governing the distribution of ...

Design and Simulation of MEMS Based Piezoelectric Vibration Energy Harvesting System

M. C. B. Kumar[1], D. B. Prabhu[1], R. Akila[1], A. Gupta[1], M. Alagappan[1]
[1]PSG College of Technology, Coimbatore, Tamil nadu, India

This paper discusses the simulation studies on a vibration based energy harvesting system to convert the undesirable mechanical vibration to useful green power. The design consists of a resonating proof mass and a spring system enclosed in housing and fixed on the source of vibration. A piezoelectric suspension acts as the transducer and generates a voltage that is used to charge the batteries of ...

Heat Transfer Modelling of Single High Temperature Polymer Electrolyte Fuel Cell (HT PEFC) Using COMSOL Multiphysics®

V. Venkataraman[1]
[1]Centre for Hydrogen & Fuel Cell Research, University of Birmingham, United Kingdom

In this paper a 3D geometry of a single HT PEFC with all the components (membrane, cathode, anode & bipolar plate with flow field) was modelled for heat transfer. The source of heat within the fuel cell is the internal heat generated from electrochemical reactions. Heat source terms used in the model are: Joule Heat - Occurs in membrane and modelled as Volumetric heat source Irreversible ...

Thermal Diffusivity Test Bench for Li Ion Cells Using LiveLink™ for MATLAB®

A. Arzberger[1]
[1]RWTH Aachen University -ISEA-, Aachen, NRW, Germany

LiveLink™ for MATLAB® is used to fit the surface temperature of a battery cell within a COMSOL Multiphysics® model to the temperature measured by a thermal imaging camera. The test bench was designed and built up of ourselves to allow nondestructive thermal diffusivity measurement of Li Ion cells as a function of temperature, state of charge (SOC), state of health (SOH) and others. In that ...

Analysis of Electro-Thermal Hot Spot Formation in Li-Ion-Battery-Cells

W. Beckert[1], C. Freytag[1], T. Frölich[1], G. Fauser[1]
[1]Fraunhofer IKTS, Dresden, Germany

The presented model approach offers a computational efficient tool to analyze the influences of geometrical design details, material selection and operational conditions on the electro-thermal behavior of a full Li ion battery cell geometry. It considers typical aspects as anisotropic winding structure, electro-thermal coupling and nonlinear electrical characteristics for moderate computational ...

Simplified Multiphysics Model for All-Solid State Microbatteries

M.S. Nesro[1], I.M. Elfadel[1]
[1]Masdar Institute of Science and Technology, Masdar City, Abu Dhabi, UAE

Lithium microbatteries are replacing conventional power sources in many microsystems areas such as wireless sensors and biomedical monitors. In many of these applications, compact models of micro batteries are needed both at the microsystems design stage and at the real-time power management stage. These compact models are typically derived from physics-based discretized formulations. We have ...

Comparison of Two-Dimensional PEM Fuel Cell Modeling using COMSOL Multiphysics

Z. Shi, X. Wang, and Z. Zhang
Oakland University, Rochester, MI

Two different two-dimensional mathematical models of the one PEM fuel cell are modeled using COMSOL Multiphysics, each considering a different cross-section. The first Models considers the influence of fluid behavior in the channel, while the second considers the interdigitated flow pattern. Results, including the mass concentration, the polarization curve, potential distribution and velocity ...

Quick Search