Presentazioni e Articoli Tecnici

In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Analyzing Muffler Performance Using the Transfer Matrix Method 

K. Andersen
Dinex Emission Technology A/S, Middelfart, Denmark

Exhaust noise must meet legislation targets, customer expectations and cost reduction which call for design optimization of the exhaust systems in the design phase. One solution is to use 3 dimensional linear pressure acoustics and calculate the transfer matrix of the muffler. The transfer matrix is the basis for calculating either the insertion loss or transmission loss of a muffler. The 3D ...

Dynamic Characterization and Mechanical Simulation of Cantilevers for Electromechanical Vibration Energy Harvesting

N. Alcheick[1], H. Nesser[1], H. Debeda[1], C. Ayela[1], I. Dufour [1]
[1]Univ. Bordeaux, IMS Lab, Pessac, France

Energy harvesting from ambient vibrations has become an interesting topic for powering wireless sensor networks. Resonant microdevices based on MEMS have become of central importance at low frequency. The power produced at resonance is at least one order of magnitude larger than off frequency power since the largest strain is obtained at resonance. In order to obtain large strain for efficient ...

Simulation of Impact Damage in a Composite Plate and Its Detection

V. Pavelko[1], I. Pavelko[1], M. Smolyaninovs[1], H. Pffeifer[2], M. Wevers[2]
[1]Riga Technical University, Riga, Latvia
[2]Catholic University Leuven, Leuven, Belgium

A problem of damage prediction in aircraft structure and its non-destructive evaluation is very important for aircraft structural health assessment. The analysis of the features of direct impact of thin-walled laminate component of aircraft was performed by COMSOL Multiphysics software. Mainly the GFRC and CFRC laminates were selected in form either thin separate plate or sandwich structure. The ...

SAW Sensors for Surgical Arm using Piezoelectric Devices

Rakesh Kumar Pati [1], SK Mohammed ali[1], Sakuntala Mahapatra[1], Millee Panigrahi[1]
[1]MEMS Design Centre, Dept. of ETC, Trident Academy of Technology, Bhubaneswar, Odisha, India

Despite of the existing successful clinical applications, however, the interaction, i.e. artificial sensing, between the robot and the patient is still very limited. With the help of various cameras, vision is almost the only feeling that a robot can have. In order to imitate the human skin, various signals e.g., the strength of pressure, change of strength, speed and acceleration should be ...

Ultrasonic Beam Steering in Isotropic Media

S. Jeyaraman, B. Ganesan, and M. Kumar
GE Global Research, Bangalore

In this paper, a numerical model for time-domain ultrasound plane wave propagation for a desired angle is presented. The propagating angle is a function of the distance and the time-delay between the individual elements, and the propagating sound speed. In this model, the control parameter 'time' is used for steering the beam at the desired angle. We present an application of the proposed ...

Acoustic Field Comparison of High Intensity Focused Ultrasound Using Experimental Characterization and Finite Element Simulation

J. L. Teja[1], A. Vera[1], L. Leija[1]
[1]Department of Electrical Engineering, Cinvestav-IPN, Mexico D.F., Mexico

High Intensity Focused Ultrasound (HIFU) is used as a noninvasive technique of tissue heating and ablation for different medical treatments. This paper presents a quantitative comparison of HIFU acoustic fields experimentally obtained versus simulated acoustic fields. Acoustic field characterization was realized in two HIFU transducers using water as a propagation medium. Also, simulations were ...

Investigation on Sensor Fault Effects of Piezoelectric Transducers on Wave Propagation and Impedance Measurements

I. Buethe[1], C.-P. Fritzen[1]
[1]University of Siegen, Institute of Mechanics and Control Engineering-Mechatronics, Siegen, Germany

For active Structural Health Monitoring (SHM), one popular sensor type is the piezoelectric wafer active sensor (PWAS) due to its multi-purpose application as actuator and sensor and its low cost. It is used to generate a wave field, which interacts with the structure and is recorded by a second set of PWASs. This method is called acousto ultrasonics. The change in wave field from transducer ...

Scale-up Design of Ultrasound Irradiator for Advanced Oxidation Process (AOP) Using COMSOL Multiphysics® Simulation

Z. Wei[1]
[1]The Ohio State University, Columbus, OH, USA

Ultrasound is a promising green technology for the advanced oxidation process (AOP) since it adds no chemicals to the treated water. In this paper, COMSOL Multiphysics® was used as a tool to design and characterize an ultrasound irradiator with multi-stepped configuration, which aims to overcome disadvantages of typical irradiators and to enhance contaminant removal in large-scale water ...

Mapping Local Cavitation Events in High Intensity Ultrasound Fields

V. Raman [1], A. Abbas[2], and S.C. Joshi[2]
[1] Indian Institute of Technology, Madras
[2] Nanyang Technological University, Singapore

The linear acoustic pressure field is obtained by solving the homogenous Helmholtz equation using COMSOL Multiphysics. The pressure field is used to calculate the collapse pressure of the transient cavitation bubbles by using the cavity cluster approach. The regions where the local pressure exceeds the Blake threshold are potential regions of transient cavitation events. The ultrasound ...

COMSOL Analysis of Acoustic Streaming and Microparticle Acoustophoresis

H. Bruus[1], P.B. Muller[1], R. Barnkob[1], M.J.H. Jensen[2]
[1]Technical University of Denmark, Kongens Lyngby, Denmark
[2]COMSOL, Kongens Lyngby, Denmark

We have simulated the ultrasound-induced acoustophoretic motion of microparticles suspended in an aqueous solution. The full first-order thermoviscous acoustics equations have been implented on a rectangular microfluidic 2D domain excited with an ultrasound field tuned to resonance near 2 MHz. The micrometer-thin but crucial viscous boundary layers at the rigid walls have been fully resolved. The ...

Quick Search