Presentazioni e Articoli Tecnici

In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Innovating New Products using Multiphysics Modeling

Dr. Shekhawat is currently the General Manager for New Products Development at Secure Meters Ltd., Udaipur. Prior to this, he was with CEERI, Pilani for 23 years. He has a Ph.D., MS, M. Sc. (Physics) and BE (EEE) from BITS, Pilani. He is the recipient of several honours including the DAAD Fellowship, Germany and National Science Talent Fellowship. His areas of research include Ultrasonic ...

Towards a Finite Element Calculation of Acoustical Amplitudes in HID Lamps

B. Baumann[1], M. Wolff[1], J. Hirsch[2], P. Antonis[2], S. Bhosle[3], and R. Valdivia Barrientos[4]
[1]Hamburg University of Applied Sciences, Hamburg, Germany
[2]Philips Lighting, Eindhoven, The Netherlands
[3]LAPLACE, Université de Toulouse and CNRS, Toulouse, France
[4]National Institute of Nuclear Research, Salazar, Ocoyoacac, Mexico

High intensity discharge lamps can experience flickering and even destruction, when operated at high frequency alternating current. The cause of these problems has been identified as acoustic resonances inside the lamp’s are tube. Here, a finite element approach for the calculation of the acoustic response function is described. The developed model does not include the plasma dynamics.

Electro-acoustic Coupling in Nematic Liquid Crystals

G. Rosi[1], L. Teresi[1], A. DiCarlo[1], and F. dell'Isola[2]
[1]LaMS - Università degli Studi Roma Tre, Roma, Italy
[2]Università degli Studi di Roma "La Sapienza", Roma, Italy

Liquid crystals - as all liquids - are generally modelled as incompressible media. In fact, mass-density changes occurring in these mesophases are minuscule and inconsequential in most regimes of interest. However, liquid crystals exhibit also phenomena that call for a more refined theory. In particular, it is experimentally well established that the Fréedericksz transition - i.e., the sudden ...

Calibration of Ultrasonic Testing for Faults Detection in Stone Masonry

M. Usai[1], S. Carcangiu[1], G. Concu[2]
[1]Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
[2]Department of Civil Engineering, Environmental and Architecture, University of Cagliari, Cagliari, Italy

In the field of assessment methodologies, particular importance is given to Non-Destructive Testing Techniques, which aspire to achieve the highest number of information about materials and structures without altering their condition. Ultrasonic Testing exploits the transmission and reflection characteristics of mechanical waves with appropriate frequencies passing through the investigated item. ...

Towards Rotordynamic Analysis with COMSOL Multiphysics

M. Karlsson[1]
[1]ÅF, Stockholm, Sweden

In this paper a pre-study on using COMSOL Multiphysics for rotordynamic analysis is presented. It is concluded that it is possible to use COMSOL Multiphysics to perform rotordynamical analysis. However, there are no standard environment for rotordynamics, hence the user has to extend the structural model with the rotordynamics effect such as gyroscopic effect and rotordynamical coefficients. By ...

Modeling of a Jecklin Disk for Stereophonic Recordings

G. McRobbie[1]
[1]University of the West of Scotland, Paisley, Renfrewshire, UK

The Jecklin Disk is a sound absorbing disk placed between two omnidirectional microphones. It is used to recreate some of the frequency-response, time and amplitude variations human listeners’ experience, but in such a way that the recordings also produce a useable stereo image through loudspeakers. This paper presents a finite element model able to simulate the effects on sound propagation ...

Earth Pressure as a Boundary Condition to Bridge Piers and Abutments

M. Quinn[1], D. Whitlow[1], O.D.S. Taylor[1], M.H. McKenna[1]
[1] Engineer Resource and Development Center, United States Army Corps of Engineers, Vicksburg, MS, USA

Bridge piers and abutments makeup the bridge substructure and transmit loads from the superstructure to the bridge foundation material (Figure 1). The bridge abutment serves three purposes: to provide vertical support to the bridge superstructure where the bridge ends, to connect the bridge with the approach roadway, and to retain roadway base materials. There are several types of abutment ...

Toward an Evaluation of the Tonal Colouring of the Japanese koto using COMSOL Multiphysics and Acoustics Module

K. Coaldrake[1]
[1]The University of Adelaide, Adelaide City, South Australia, Australia

This paper investigates the potential for a multidisciplinary approach using COMSOL Multiphysics for the evaluation of the tonal colouring of the Japanese koto (13-stringed zither). It uses Ando’s classic acoustic studies (1986; 1996) as a benchmark for the analysis of the natural resonant frequencies and design of the sounding body of the koto. It reports on the development of the model and ...

Lösung eines gekoppelten Konvektions-Diffusions-Problems aus der Akustik

G. Bärwolff
TU Berlin, Inst.f.Math., Berlin

Zur effizienten Beschreibung akustischer Systeme werden oft sogenannte Netzwerkmodelle benutzt. Hierbei wird das Gesamtsystem in einzelne (einfache) Elemente zerteilt, die dann jeweils durch ihr eigenes Übertragungsverhalten charakterisiert sind. Besonders einfach lässt sich dieses Übertragungsverhalten darstellen, wenn zwischen den Elementen nur ebene Wellen ausbreitungsfähig sind.1 In ...

Numerical Model of a Very Light Jet Cavity

F. Teuma Tsafack, T. Kletschkowski, and D. Sachau
Helmut-Schmidt-University / University of the Federal Armed Forces, Hamburg, Germany

To prepare for the installation of a combined audio-ANC-system for a very light jet (VLJ), a finite element model of the investigated cavity was developed.Both an eigenvalue analysis and a time harmonic analysis were performed. The latter was needed to determine the transfer functions between error sensors and actuators.The simulations were performed using COMSOL Multiphysics. The results of the ...

Quick Search