Presentazioni e Articoli Tecnici

In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Parametric Model Of An Air-Core Measuring Transformer

D. Herceg
Faculty of Technical Science, Novi Sad, Serbia

Power grid voltages and currents may be distorted due to presence of harmonics. Measurements of such voltage with harmonics may be performed using newly developed instrument with a small air-core transformer based probe as the input unit. The probe must be shielded against unknown external electromagnetic fields. At the same time, the probe must remain linear throughout the range of frequencies. ...

Simulation and Verification of a Capacitive Proximity Sensor

T. Schlegl, and H. Zangl
Graz University of Technology
Graz, Austria

State of the art proximity sensors are most often based on optical or tactile methods. Although these sensor systems are widely used (e.g. clamping protection) the reveal several drawbacks. Most optical sensors need a line of side whereas tactile sensors cannot be used to determine a distance to an approaching object. Capacitive sensing technology has proven to be an interesting alternative to ...

Magnetic and Circuital Modeling of a Low Harmonic Pollution Three Phase Transformer

E. Scotoni[1], C. Tozzo[2], D. Zoccarato[1], F. Paganini[1]
[1]TMC Italia, Busto Arsizio, Italy
[2]COMSOL, Brescia, Italy

A three phase transformer with very low harmonic pollution transferred back to power line is here presented. In fact, thanks to the described setup, intermediate harmonics (5th and 7th) are not going out back to the power line feeding the primary. These results has been extensively validated versus measurements performed on produced and shipped machine. With these results, TMC is then featuring ...

Numerical Modeling of a MEMS Sensor with Planar Coil for Magnetic Flux Density Measurements

J. Golebiowski[1], S. Milcarz[1]
[1] Department of Semiconductor and Optoelectronics Devices, Technical University of Lodz, Lodz, Poland

The silicon cantilever with the planar coil was applied to the magnetic flux density measurements. The influence of shape and dimensions of planar coil on magnetic energy density was described. In cause of magnetic anisotropy of analyzed silicon structure FEM method and couple field method was applied in simulation. The Lorentz force based sensors owing to their potentially simpler fabrication ...

Power transmission lines generated electric and magnetic fields calculations

EL-Fouly, T.H.M.1, EL-Saadany, E.F.1, Salama, M.M.A.1, Abdel-Galil, T.K.2, Habiballah, I.O.2
1 Electrical and Computer Engineering Dept., University of Waterloo, Waterloo, Ontario, Canada
2 King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

This paper invetigates using the FEMLAB software modules in calculating the electromagnetic fields generated in the vicinity of High Voltage (HV) power transmission lines. The analysis presented in this paper is divided into two main parts. The first part investigate the effectivness of using the electrostatic and magnetotstatic modules of the FEMLAB software in claculating the generated ...

Multiphysics Analysis for the Electromagnetic Vibration Absorber

K. Liu, and Y. He
Department of Mechanical Engineering, Lakehead University, Thunder Bay, ON, Canada

This paper reports a multiphysics analysis for a newly developed electromagnetic vibration absorber (EMVA). The EMVA uses an electromagnet, permanent magnet, and aluminum beam to form a variable spring. By changing the current of the electromagnet, the stiffness of the EMVA can be adjusted instantaneously. Such a device belongs to the family of tunable vibration absorbers. The tunable vibration ...

Finite Element Model of a Magnet Driven Reed Switch

B. LaBarge[1], and E. Gutierrez-Miravete[2]

[1]Gems Sensors and Controls, Plainville, CT, USA
[2]Rensselaer at Hartford, Hartford, CT, USA

A simple proximity sensing circuit is made using magnets actuating reed switches; these switches are wired into a larger circuit that performs auxiliary functions. The success or failure of such systems is a function of their position. A simulation using COMSOL Multiphysics is conducted to study the position of a reed switch relative to a magnet when the switch opens and closes. Ability to ...

Analysis of Multiconductor Quasi-TEM Transmission Lines and Multimode Waveguides

S.M. Musa[1], M.N.O. Sadiku[1], and O.D. Momoh[2]
[1]Prairie View A&M University, Prairie View, TX, USA
[2]Indiana University-Purdue University, Fort Wayne, IN, USA

This paper presents an analysis approach of multicondcutor quasi-TEM lines transmission interconnect in a single dielectric region and multimode waveguides using the finite element method (FEM). FEM is especially suitable and effective for the computation of electromagnetic fields in strongly inhomogeneous media. We illustrate that FEM is suitable and effective as other methods for modeling of ...

Numerical Calculation of the Dynamic Behavior of Asynchronous Motors with COMSOL Multiphysics

J. Güdelhöfer[1], R. Gottkehaskamp[1], A. Hartmann[1]
[1]Department of Electrical Machines and Electromagnetic Field Theory, University of Applied Sciences Düsseldorf, Düsseldorf, Germany

This paper shows how a time-dependent and non-linear simulation of the dynamic operation behavior of an induction machine is executed by means of the \"Rotating Machinery\" interface from COMSOL Multiphysics 4.2a. The two-dimensional FEM model is connected to electrical circuits by coupling the physics \"Rotating Machinery\" and \"Electrical Circuit\" interfaces. These circuits include the lumped ...

Ampacity Simulation of a High Voltage Cable Used in Offshore Wind Farms

E. Pelster[1]
[1]Wenger Engineering, Ulm, Germany

The ampacity of a cable depends on the cross section of its conductor. When selecting a cable design for a specific application it is of interest to choose the lowest possible conductor cross section in order to reduce material costs. Therefore an exact calculation of the ampacity is necessary (it is usually limited by the thermal resistance of the insulating cable materials). Commonly the ...

Quick Search