Presentazioni e Articoli Tecnici

In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Numerical Aspects of the Implementation of Artificial Boundary Conditions for Laminar Fluid-Structure Interactions

C. Boeckle[1], P. Wittwer[1]
[1]University of Geneva, Geneva, Switzerland

We discuss the implementation of artificial boundary conditions for stationary Navier-Stokes flows past bodies in the half-plane, for a range of low Reynolds numbers. When truncating the half-plane to a finite domain for numerical purposes, artificial boundaries appear. We present an explicit Dirichlet condition for the velocity at these boundaries in terms of an asymptotic expansion for the ...

Ventilation System of a Microwave Assisted Drying Kiln

A.-G. Ghiaus[1], M.-A. Istrate[1], A. Georgescu[1]
[1]Technical University of Civil Engineering, Bucharest, Romania

The paper presents the analysis and optimization of the ventilation system inside of a drying lumber kiln. As with any part of the manufacturing process, improper drying techniques cause quality degradation and considerable amount of energy loose. The improvement and optimization of air distribution systems in drying kilns contributes to the preservation of the wood quality. The performance of ...

A Study of Thermo-Fluid Behavior in Tubular Metal Hydride Beds in the Hydriding Process

S. Makridis[1], E.I. Gkanas[1], A. Ioannidou[2], E.S. Kikkinides[2], A.K. Stubos[3]
[1]Department of Mechanical Engineering, University of Western Macedonia, Kozani, Greece & Environmental Research Laboratory, Institute of Nuclear Technology and Radiation Protection, NCSR “Demokritos”, Athens, Greece
[2]Department of Mechanical Engineering, University of Western Macedonia, Kozani, Greece
[3]Environmental Research Laboratory, Institute of Nuclear Technology and Radiation Protection, NCSR “Demokritos”, Athens, Greece

Hydrogen, the most abundant element in the universe, has great potential as an energy source, and can be generated from renewable energy sources. We used COMSOL for the solution of the energy, mass and momentum balance equations that describe the hydrogen absorption and desorption procedure in the metal hydride compressor. Thermodynamic or engineering properties like the reaction enthalpy ??, ...

Impact Assessment of Hydrologic and Operational Factors on the Efficiency of Managed Aquifer Recharge Scheme

M.A. Rahman[1], P. Oberdorfer[1], Y. Jin[1], M. Pervin[1], E. Holzbecher[1]
[1]Department of Applied Geology, Geoscience Center, University of Göttingen, Göttingen, Lower Saxony, Germany

Due to increased demands on groundwater accompanied by increased drawdowns (ca. 2-3 meters/year), technologies that use alternative water resources have been suggested for Dhaka City, Bangladesh. Preliminary studies show that managed aquifer recharge (MAR) would help in optimal use of available water resources and to reduce adverse effects of pumping in the Dupitila aquifer of the city. In this ...

Building Energy Simulation Using the Finite Element Method

J. van Schijndel[1]
[1]Eindhoven University of Technology, Eindhoven, The Netherlands

In order to predict, improve and meet a certain set of performance requirements related to the indoor climate of buildings and the associated energy demand, building energy simulation (BES) tools are indispensable. Due to the rapid development of FEM software and the Multiphysics approaches, it should possible to build and simulate full 3D models of buildings regarding the energy demand. The ...

Numerical Simulation of Recovery of Light Oil by Medium Temperature Oxidation in Porous Media

N. Khoshenvis Gargar[1], A. Mailybaev[2], D. Marchesin[2], H. Bruining[1]
[1]Delft University of Technology, Delft, The Netherlands
[2]Instituto Nacional de Matematica Pura e Aplicada, Rio de Janeiro, Brazil

One of the methods to recover oil from medium and low viscosity in complex reservoirs uses air injection leading to oil combustion. In this case the oxygen in the air burns the heavier components of the oil, generating a heat wave leading to vaporization of lighter components. In this work, we consider a simple model for air injection in light oil reservoir containing only one component in dry ...

BHE Field Design by Superposition of Effects in Space and Time

S. Lazzari[1], E. Zanchini[1]
[1]DIENCA - University of Bologna, Bologna, Italy

A design method for BHE fields in the absence of groundwater flow is presented, based on the superposition of effects. The effects of any periodic heat load with a period of one year can be obtained by a weighted sum of the effects of a monthly unit step heat load, properly displaced in time. The interference among BHEs is evaluated by the superposition of effects in space. The result of the ...

Coupled Hydrochemical Modeling for the Optimal Design of an In-situ Redox Experiment

P. Trinchero[1], J. Molinero[1], G. Román-Ross[1], A. Nardi[1], L.M. De Vries[1], T. Karvonen[2], P. Pitkänen[3]
[1]Amphos 21, Barcelona, Spain
[2]WaterHope, Helsinki, Finland
[3]Posiva, Eurajoki, Finland

In this work, we present a number of scoping calculations that have been carried out to design an in-situ redox experiment (Figure 1) focused on assessing potential changes in the pH and redox conditions and in the buffering capacity of the Olkiluoto bedrock (i.e. the site for the Finnish spent fuel repository). A characteristic of these models lies in the need to integrate prior information, ...

Quick Search

221 - 228 of 228 First | < Previous | Next > | Last