Presentazioni e Articoli Tecnici

In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Punch Design for Uniaxial Forging Process of γ-TiAl Using COMSOL Multiphysics®

R. Cagliero[1] and G. Maizza[1]
[1]Dipartimento di Scienza dei Materiali ed Ingegneria Chimica, Politecnico di Torino, Torino, Italy

The increasing demand for improved metallurgical products strongly motivates the optimization of manufacturing processes and design of γ-TiAl products. Among the large variety of available forming processes, cold closed-die forging is particularly suitable for producing net shape bulk products having good surface finish with better mechanical properties. Pressing punches of suitable profile ...

Numerical Evaluation of Long-Term Performance of Borehole Heat Exchanger Fields

A. Priarone[1], S. Lazzari[1], and E. Zanchini[1]

[1]Dipartimento di Ingegneria Energetica, Nucleare e del Controllo Ambientale, Alma Mater Studiorum - Università di Bologna, Bologna, Italy

The long-term performance of double U-tube Borehole Heat Exchangers (BHEs) is studied numerically by considering three different time-dependent heat fluxes exchanged between each BHE and the ground. Since the temperature distribution along the vertical direction has a negligible influence on long-term BHE performance, the problem is studied by means of a 2D conduction model, where the energy ...

Modeling of Silicon Transport into Germanium Using a Simplified Crystal Growth Technique

F. Mechighel[1][3], B. Pateyron[1], M. El Ganaoui[1], S. Dost[2], and M. Kadja[3]

[1]Laboratory SPCTS UMR CNRS, ENSCI, Limoges University, Limoges, France
[2]Crystal Growth Laboratory, Department of Mechanical Engineering, University of Victoria, British Columbia, Victoria, Canada
[3]Department of Mechanical Engineering, University of Constantine, Constantine, Algeria

A numerical simulation study, using COMSOL Multiphysics®, was carried out to examine the temperature and concentration fields in the dissolution process of silicon into germanium melt. This work utilized a simplified configuration which may be considered to be similar material configuration to that used in the Vertical Bridgman growth methods. The concentration profile for the SiGe sample ...

Chemical Reactions in a Microfluidic T-Sensor: Numerical Comparison of 2D and 3D Models

R. Winz[1][2], N. Schröder[1], W. Wiechert[1], and E. von Lieres[1]
[1]Institute of Biotechnology 2, Research Centre Jülich, Jülich, Germany
[2]Research Center for Micro and Nanochemistry, University of Siegen, Siegen, Germany

In recent years lab-on-microchip technology has become a powerful tool for micro-scale analysis of biochemical processes. In the studied system the overall process consists of transport, convection, diffusion, reaction and adsorption processes. Two compounds A and B, contained in a carrier fluid (buffer), are introduced into a reaction channel via a Y-shaped double-inlet. As the streams flow ...

Laminar Thermal Mixing in Coating Flows

A. Haas[1], M. Scholle[1], A. Aksel[1], H.M. Thompson[2], R.W. Hewson[2], and P.H. Gaskell[2]

[1]Department of Applied Mechanics and Fluid Dynamics, University of Bayreuth, Bayreuth, Germany
[2]School of Mechanical Engineering, University of Leeds, Leeds, United Kingdom

Heat transfer in a plane shear flow configuration consisting of two infinitely long parallel plates is considered. In laminar flows over undulated substrates eddies can be generated due to the kinematical constraints. A closed form analytical solution for the velocity field, based on lubrication theory as well as a semi-analytic solution for the temperature field is derived for the creeping flow. ...

COMSOL Multiphysics® Version 4

Svante Littmarck
President and CEO, COMSOL

Svante Littmarck is the CEO of the COMSOL group. He co-founded COMSOL in 1986. He holds a M.Sc. in Applied Mathematics from the Royal Institute of Technology in Stockholm. In 2004 he received an honorary doctoral degree from the Royal Institute of Technology.

Handling Tessellated Free Shape Objects with a Morphing Mesh Procedure in COMSOL Multiphysics®

P. Franciosa[1] and S. Gerbino[2]
[1]Faculty of Engineering, University of Naples Federico II, Napoli, Italy
[2]Faculty of Engineering, University of Molise, Campobasso, Italy

Tessellated models are more and more used in several engineering fields. The need to use such models to quickly perform computer simulations related to coupled physical phenomena, implies the use of dedicated software, allowing to solve, into an integrated environment, multiphysics problems. In the present work, COMSOL Multiphysics® has been used and its ability to handle tessellated models ...

Including Expert Knowledge in Finite Element Models by Means of Fuzzy Based Parameter Estimation

O. Krol[1], N. Weiss[1], F. Sawo[1], and T. Bernard[1]

[1]Fraunhofer Institute for Information and Data Processing, Karlsruhe, Germany

In this paper we present a novel approach for modeling spatial distributed bio- chemical and environmental processes like the growth of plants and the related biochemical reactions. The physical phenomena like flow and mass transport can be described by fluid dynamics equations, but for effects like growth rates often no analytic models are available. However, in many cases experts have knowledge ...

Growth and Remodelling of Intracranial Saccular Aneurysms

A. Di Carlo[1], V. Sansalone[2], A. Tatone[3], and V. Varano[1]
[1]Modelling and Simulation Lab, Università Roma Tre, Roma, Italy
[2]Laboratoire de Mécanique Physique, Université Paris Est, Paris, France
[3]DISAT, Università degli Studi dell’Aquila, L'Aquila, Italy

We present a mechanical model a growing spherical shell suitable for predicting the evolution of a Saccular Cerebral Artery Aneurysms (SCAA). It relies basically on the Kröner-Lee decomposition, used to describe the interplay between the current and the relaxed configuration of body elements. Rupture or stabilization of a SCAA are the end effect of a number of biological mechanisms, still poorly ...

Quick Search

201 - 209 of 209 First | < Previous | Next > | Last