

Spatiotemporal Study of Thrombosis incorporating Recent Rheological Findings

Christina Rice

September 2020

Motivation

- Hemostasis stops internal bleeding
- Clinical Relevance
 - Under-active -> hemorrhage
 - Over-active -> thrombosis (blood vessel occlusion)
 - Unaddressed thrombosis can lead to heart attack or stroke

HAEMOSTASIS

[1] Becatti M, Emmi G, Bettiol A, Silvestri E, Di Scala G, Taddei N, Prisco D, Fiorillo C. Behçet's syndrome as a tool to dissect the mechanisms of thrombo-inflammation: clinical and pathogenetic aspects. Clinical & Experimental Immunology. 2019 Mar;195(3):322-33.

ERFACES INSTITUTE

Background

- Few thrombosis models include rheological feedback
- Variable Viscosity Constitutive Equation
 - Dependence on shear rate and chemical concentration

[2] Bodnár T, Sequeira A. Numerical simulation of the coagulation dynamics of blood. Computational and Mathematical Methods in Medicine. 2008 Jun 1;9(2):83-104.

- Reduced blood coagulation model
 - Optimizes computational cost while capturing kinetics

[3] Hansen KB, Shadden SC. Automated reduction of blood coaguiation models. International journal for numerical methods in biomedical engineering. 2019 Oct;35(10):e3220.

Project Scope

- Build a COMSOL Simulation App to Evaluate Thrombosis Formation
 - Computationally efficient
 - Easy to Manipulate
- Apply to Test Coagulation Respond to Injury and Device Insertion
- This App will use the "Reacting Flow" library

° a

N

Geometry

Artery

- 0.06 m length
- 0.0031 m radius

Wound Site

- 2D Axis Symmetry
- 0.025 0.035 m

Chemokinetic implantation

- Using Reaction Engineering Module to generate space-dependent model with Chemistry and Transport of Dilute Species Modules
 - 📲 Chemistry 1 (chem) I: TF+ten=>XaVa Species: TF Species: ten Species: XaVa 2: TF+ten+ll=>TF+ten+lla Species: II Species: Ila ▶ 👗 3: XaVa+II=>XaVaII Species: XaVall 4: XaVall=>XaVa+mlla Species: mlla 3: XaVa+mlla=>XaVa+lla ▶ 👗 6: mlla=>mllaATIII Species: mllaATIII ▶ 👗 7: IIa=>IIaATIII Jesti Species: IlaATIII

Parameter	Value	Unit
TF Wall Flux	1e-6	mol / (m^2 s)
Initial X Concen.	1.6e-4	Μ
Initial V Concen.	2e-5	Μ
Initial II Concen.	1.4e-3	Μ
Diffusivities	1e-7	m ² / s
Reaction Rates	See [3]	varies

[3] Hansen KB, Shadden SC. Automated reduction of blood coagulation models. International journal for numerical methods in biomedical engineering. 2019 Oct;35(10):e3220.

Flow Implementation

- Laminar Flow Module with Fully developed inlet
- User defined viscosity

Independent Tests

OD Batch Reactor

Test of Pipe Flow to Verify Centerline Velocity

Fully Coupled Reacting Flow

Velocity Around the Thrombosis

Thrombin Concentration (mol/m³)

Dynamic Viscosity (Pa*s)

Future Direction

- Investigate thrombosis on drug-eluding stent

https://resident360.nejm.org/clinical-pearls/drug-eluting-coronary-stents

Acknowledgements and Questions

Larson Lab

NSF Fellowship (DGE 1841052)

If you have any questions please reach out to <u>cerice@umich.edu</u>