Presented at the 2011 COMSOL Conference in Boston

CORNING

Microwave drying of cellular ceramic substrates: A conjugate modeling approach to understand surface moisture migration

Amit Halder and Jacob George

09-28-2011

Science & Technology

Corning Incorporated

Founded:

1851

Headquarters:

Corning, New York

Employees:

~ 26,000 worldwide

2010 Sales:

\$6.6 Billion

Fortune 500 Rank (2011): 350

- Corning is the world leader in specialty glass and ceramics.
- We create and make keystone components that enable high-technology systems for consumer electronics, mobile emissions control, telecommunications, and life sciences.
- We succeed through sustained investment in R&D, 160 years of materials science and process engineering knowledge, and a distinctive collaborative culture.

Corning Market Segments and Additional Operations

Display Technology	Telecom	Environmental Technologies	Life Sciences	Specialty Materials	Other Products & Services
 LCD Glass Substrates Glass Substrates for OLED and LTPS-LCD 	 Optical Fiber & Cable Hardware & Equipment Fiber optic connectivity products 	 Emissions Control Products Light-duty gasoline vehicles Light-duty and heavy-duty on-road diesel vehicles Heavy-duty non- road diesel vehicles Stationary 	 Cell Culture & Bioprocess Assay & High- Throughput Screening Genomics & Proteomics General Laboratory Products 	 Corning[®] Gorilla[®] Glass Display Optics & Components Optical Materials Semiconductor materials Specialty fiber Polarcor™ Optics Aerospace and Defense Ophthalmic 	 Emerging Display Technology Drug Discovery Technology New Business Development Equity Companies Cormetech, Inc. Dow Corning Corp. Eurokera, S.N.C. Samsung Corning Precision Materials Co., LTD (SCP)

Research & Development

Corning's strength is based on a broad portfolio of core technologies...

... and the ability to integrate them.

Research & Development Pipeline Management

Customer & Market Understanding

Microwave drying of ceramic substrates

Microwave drying is one of the steps in the process

- Faster and cheaper
- Models are critical in analysis and optimization

How is microwave drying taking place?

Transport Model: Porous Media Assumption

Water

- Pressure driven
- 4 Capillarity (sat, temp) driven

Equilibrium Hoisture & vapor pressure

Vapor 4 Pressure driven

 Diffusion in air

Air

- Pressure driven
- Diffusion in vapor

Energy

- Convection & Conduction
- 4 Evaporation
- Microwave absorption

8

Modeling Strategy

Require a robust model

- Computationally intensive if all physics included
- Reduce the problem to include important physics
 - Experiments
 - Modeling
 - Micro scale models
- Reduced model
 - Robust
 - Scale up easier

Conjugate model (half channel + half wall)

Multiphase heat and mass transport model: Equations

	$\partial (\partial z - S) + \nabla (\overline{z}) = i$	Comsol Implementation	
Liquid phase and	$\frac{\partial t}{\partial t} (\psi D_w S_w) + \nabla (n_w) = -1$	Convection and	
Gas phase mass	$- k_w^p = k_$	diffusion equation	
Dalance	$n_w = -\rho_w \frac{w}{\mu_w} \nabla (P - P_{cap}) = -\rho_w \frac{w}{\mu_w} \nabla P + \rho_w \frac{w}{\mu_w} \nabla P_{cap} = -\rho_w \frac{w}{\mu_w} \nabla P - D_w \nabla C_w$	Scalar expressions	
	$\dot{I} = K \left(\rho_{v,eq} - \rho_v \right) S_g \phi$		
Mass balance of	$\frac{\partial}{\partial t}(\phi \rho_g S_g \omega_v) + \nabla (\overline{u_g} \rho_g \omega_v) = \phi S_g \frac{C_g}{\rho_g} M_v M_a D_g \nabla x_v + \dot{I}$	Stefan-Maxwell's multi	
the gas phase	$\omega_v + \omega_a = 1$	species diffusion equation	
0			
Momentum balance	$\frac{\partial}{\partial}(dS \rho u) + \nabla ((dS)^2 \rho u u) = -\nabla P - (dS) \frac{\mu_g}{\mu_g} u + \mu \nabla^2 u$		
of gas phase	$\frac{\partial}{\partial t} \left(\frac{\partial \rho}{\partial x_{g}} \right) = \frac{\partial}{\partial t} \left(\frac{\partial \rho}{\partial x_{g}} \right) + \nabla \left(\frac{\partial}{\partial t} \right) = \frac{i}{L}$	Weakly compressible Navior-Stokes equation	
	$\partial t \left(\varphi_{g} \partial_{g} \right) + (\psi_{g} \partial_{g}) + (\psi_{$		
Energy balance of	$Q = C = \frac{\partial T}{\partial t} + \left(C = \frac{\partial T}{\partial t}\right) \nabla T = \nabla \left(k = \nabla T\right) + \lambda \dot{I} + Q$	Conduction and convection	
mixture	$\mathcal{F}_{eff} = p, eff$ ∂t $(\mathcal{F}_{p, fluid}, fluid) = \mathcal{F}_{eff} = \mathcal{F}_{eff} = \mathcal{F}_{eff} = \mathcal{F}_{eff}$	equation	

Results: Transient pressure and mass flux profiles along the wall

Conclusions

- Micro scale model of one channel and one wall developed
- Model is qualitatively validated against experiments
- Fundamental understanding of drying phenomenon is enhanced by using conjugate model