

Thermo-Fluidic Impulse Response and TOF Analysis of a Pulsed Hot Wire

M.Sc. Okan Ecin Chair for Electronic Components and Circuits University Duisburg-Essen, Germany October 27th, 2011 COMSOL Conference 2011 Ludwigsburg, Germany

UNIVERSITÄT

Outline

Fundamentals to Thermal Time-of-Flight (TOF)

Experimental Setup vs. COMSOL Model

Flow Sensor as an LTI-System

Results

UNIVERSITÄT

Introduction

- flow measurement principle for quite a number of fluids
 - controlling volume flow rates of fluids
 - investigations for four fluids in a velocity range between 0.01 m/s and 1.72 m/s

Fundamentals to Thermal Time-of-Flight (TOF)

• <u>heat pulse generation</u>

- electrical signal is applied at the hot wire
- square waveform with pulse width of 0.1 s and period of 10 s
- system identification by obtaining the impulse response

Experimental Setup vs. COMSOL Model...

experimental setup of the thermal Time-of-Flight flow sensor:

Slide 5 / 17

Okan Ecin

... Experimental Setup vs. COMSOL Model...

Modeling in COMSOL Multiphysics:

- Laminar Flow mode (spf)
- Joule Heating mode (jh)
 - heat diffusion
 - heat convection
 - electric currents
- filament
- thermocouples
- stationary 3D
- stationary and transient 2D
- fluids: air
 - helium
 - water
 - oil

UNIVERSITÄT

... Experimental Setup vs. COMSOL Model

velocity distribution for oil at v_{mean} = 0.1 m/s

UNIVERSITÄT

Flow Sensor as an LTI-System...

"Thermal Time-of-Flight" (TTOF) flow sensor:

• Ecin at al., "System-theoretical analysis and modeling of pulsed thermal Time-of-Flight flow sensor", The IEEE 7th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), Madonna di Campiglio, Italy July 3-7,2011.

...Flow Sensor as an LTI-System

 Ecin at al., "Signal characterization of a pulsed-wire and and heat flow system at a flow sensor", The IEEE 20th European Conference on Circuit Theory and Design (ECCTD), Linköping, Sweden August 29-31,2011.

Results...

UNIVERSITÄT

RG

Experiment vs. Simulation:

impulse response at pulsed wire for air

signal outputs at TC1 and TC2 for air

COMSOL Conference 2011 – October 27th, 2011 Okan Ecin

Slide 10 / 17

UNIVERSITÄT

RG

Thermo-fluidic impulse responses at the pulsed hot wire:

water at several flow velocities

all fluids at v_{mean} = 0.23 m/s

COMSOL Conference 2011 – October 27th, 2011 Okan Ecin

Slide 11 / 17

Time-of-Flight of the heat pulse in gases:

G

- signal outputs at TC1 and TC2 are measured
- TOFs according to the distance are obtained by applying the crosscorrelation method to the signal outputs at TC1 and TC2
- Peclet number as the ratio of heat convection to heat diffusion

UNIVERSITÄ

G

Time-of-Flight of the heat pulse in liquids:

- heat pulse in oil is basically slower than in water
- kinematic viscosity of oil is greater
- with increasing velocity the TOF difference between oil and water decreases

Flow velocity measurement for gases:

- signal outputs at TC1, TC2 and TC3 are measured
 - TOFs according to the distances are obtained by applying the crosscorrelation to the signal outputs at TC1->TC2 and TC1 -> TC3
- variation of the mean and maximum flow velocity

G

...Results

Flow velocity measurement for liquids:

- signal outputs at TC1, TC2 and TC3 are measured
 - TOFs according to the distances are obtained by applying the crosscorrelation to the signal outputs at TC1->TC2 and TC1 -> TC3
- variation of the mean and maximum flow velocity

G

Conclusion

TTOF flow sensor is regarded as an LTI-system

simulation model matches well with experiment for air

flow sensor model applied on further fluids

thermo-fluidic impulse response depends on flow velocity

thermodynamic parameters correspond signal parameters

TOF is manipulated by heat diffusion part

UNIVERSITÄT DEUISEBNURG

Appendix

UNIVERSITÄT

RG

U

Е

thermodynamic and fluidic parameters of the investigated fluids:

	helium	air	water	oil
Pr	0.6865	0.7081	6.991	10243
ν	1.14e-4	1.53e-5	1 e- 6	8.9e-4
α	1.59e-4	2.16e-5	1.44e-7	8.7e-8
c _p	5.193	1.0064	4.185	1.88
ρ	0.1758	1.1885	998.21	887.6
λ	0.1513	2.59e-2	6e-1	0.145

COMSOL Conference 2011 – October 27th, 2011 Okan Ecin

Slide 18 / 17