COMSOL CONFERENCE 2019 BANGALORE

EM Design and Analysis of Antenna Enclosed Ground-Based Radome

Roshni N, S N V Durgesh, and Balamati Choudhury

Centre for Electromagnetics

CSIR – National Aerospace Laboratories, Bengaluru, India

28th November 2019

Outline

1. Introduction

- 2. Types of Radomes
- 3. Parabolic Reflector Antenna
- 4. Parabolic Reflector Antenna Design
- 5. A-Sandwich Radome Design
- 6. Comparison Plot
- 7. Conclusion
- 8. References

Introduction

- Radomes are protective covers for antennas
- Radomes provides
 - > Nominal temperature
 - ≻ Less frequent and simpler maintenance
 - ➢ Increased life cycle
 - ≻ Safe and congenial working area for personnel
- Some of the applications using radomes are
 - ➤ Weather and telecommunication radars
 - ➢ Aircrafts
 - ➤ Satellite communications
 - \triangleright Air traffic control and maritime communication
- A proper method of analysis of radome antenna interaction is necessary.

A Ground Based Spherical Radome [8]

Types of Radomes

- Radomes are classified based on different criteria.
 - Skin construction
 - Way of radome support
 - Shape of radome
- Based on skin construction radomes can be
 - Monolithic (plain thin dielectric)
 - Sandwich
 - ✓ A-Sandwich
 - ✓ A-Sandwich Honeycomb
 - ✓ B-Sandwich
 - ✓ C-Sandwich
 - \checkmark More than five layer

Parabolic Reflector Antenna

- Parabolic reflector antennas are high gain and directive antennas
- It consists of two parts
 - A reflecting surface
 - feed antenna
- Based on the feed position there are generally two configurations for reflector antennas
 - Front fed arrangement
 - Cassegrain feed arrangement

Parabolic Reflector Antenna Design

Table 1: Antenna parameters

Parameter	value	
Reflector radius	2.1 m	
Feed horn radius	0.054 m	
Frequency	1.789 GHz	
Horn length	0.028 m	

3D radiation pattern visualized over the feed and parabolic reflector

A-Sandwich Radome Design

- The parabolic reflector antenna enclosed hemispherical radome structure of three layers
 - E-glass epoxy for the outer layers
 - PU Foam for middle layer.

Schematic diagram

	Layer1	Layer2	Layer3
Thickness d	3.9mm	41mm	3.9mm
Permittivity ε_r	4.2	1.15	4.2
Loss tangent tanδ	0.026	0.0098	0.026

Table 3: Radome parameters

Table 4: Parameters estimated

Parameters	Value
Maximum Gain (dB)	33.1373
S11 (dB)	-16.988
VSWR	1.33

Comparison Plot

Far-field gain of parabolic reflector antenna with and without A-sandwich radome

Conclusion

- The main lobe of the radiation pattern remains almost unaffected.
- The presence of radome creates a little rise in the side lobe level.
- The designed radome have negligible affect on the EM characteristics of the parabolic reflector antenna.

References

- [1] Mashury Wahab , "Radar Radome and Its Design Considerations", International Conference on Instrumentation, Communication, Information Technology, and Biomedical Engg, Nov. 2009.
- [2] Kyung-Won Lee, Yeong-Chul Chung, Ic-Pyo Hong, and Jong-Gwan Yook, "An Effective Design Procedure for A-Sandwich Radome", IEEE Antennas and Propagation Society International Symposium, Jul. 2010.
- [3] Peng LI, Na LI, Wanye XU and Liwei SONG, "Phase Compensation of Composite Material Radomes Based on the Radiation Pattern", Chinese Journal of Mechanical Engineering, vol 30, issue 3, May. 2017.
- [4] Hongfu Meng, Wenbin Dou, and Kai Yim, "Analysis of Antenna-Radome System at Millimeter Wave Band", 2008 Global Symposium on Millimeter Waves, Apr. 2008.
- [5] Hartzell, S. D.; Tran, T.M.; Black, J. T.; Marhefka, R. j.; Terzuoli, A. J. "Analysis and feed design of a sparse aperture parabolic reflector," IEEE Radio Science Meeting, 2013, U.S. National Committee for the International Union for Radio Science (**URSI**).
- [6] Kirti Chaurasiya, and Satish Kumar, "Design and Analysis of Parabolic Reflector Using MATLAB", Int. J. of Advanced Research in Electrical, Electronics and Instrumentation Engineering, Vol. 4, Issue 3, March 2015
- [7] https://www.comsol.co.in/model/parabolic-reflector-antenna
- [8] https://en.wikipedia.org/wiki/Parabolic_antenna

THANK YOU