

Study of ER Non-equilibrium Behavior with COMSOL

Cong LI and Luwei ZHOU Physics Department, Fudan University Shanghai 200433, P.R.China <u>Iwzhou@fudan.edu.cn</u>

1. Theory -COMSOL: A powerful tool in theoretical study

Lei ZHOU et al., Physics Department, Fudan University. Metamaterials: Microwave → Visible light

Negative refraction indices

Jiping HUANG et al., Fudan University.

- 1. Metal core or shell
- 2. Form chains or columns
- 3. Lamella

Y. Gao, et al., PRL 104, 034501 (2010)

Applications

NewScientist

Home	News	In-Depth Articles	Blogs	Opinion

ENVIRONMENT

Home | Tech | Physics & Math | News

TECH

SPACE

How to make a liquid invisibility clo

) 14:51 08 January 2010 by Kate McAlpine

When J. K. Rowling described Harry Potter's invisibility

silvery", she probably wasn't thinking specifically about silver-plated nanoparticles suspended in water. But a team of theorists believe that using such a set-up would make the first soft, tunable metamaterial – the "active ingredient" in an invisibility device.

The fluid proposed by Ji-Ping Huang of Fudan University in Shanghai, China, and colleagues, contains magnetite balls 10 nanometres in diameter, coated with a 5-nanometre-thick layer of silver, possibly with polymer chains attached to keep them from clumping

Sci	e	nc	e	N	le	V	V	S
MAGAZINE	OF THE	SOCIETY	FOR	SCIEN	ICE &	THE	PUBL	.10

HOME

NEWS

BLOGS

Tech

HEALTH

FEATURES

COLUMNS

RSS FEEDS

DEPARTMENTS

E-MAIL ALERTS

subscribe

In the January 30 Issue:

ScienceNe

	o keed mem nom ciu nomo	
:: ATOM & COSMOS	:: GENES & CELLS	:: MOLEC
:: BODY & BRAIN	:: HUMANS	:: SCIENC
:: EARTH	:: LIFE	:: OTHEF
:: ENVIRONMENT	:: MATTER & ENERGY	:: SCIENO
	:: ATOM & COSMOS :: BODY & BRAIN :: EARTH :: ENVIRONMENT	:: ATOM & COSMOS :: GENES & CELLS :: BODY & BRAIN :: HUMANS :: EARTH :: LIFE :: ENVIRONMENT :: MATTER & ENERGY

Home / News / Article

LIQUID LIGHT BENDER PROPOSED

Tiny nanoparticles dispersed in fluid may hide objects

By Laura Sanders

Web edition : Thursday, January 14th, 2010

A+ A* Text Size

Tiny silver-coated rust particles suspended in water may give the fluid lightbending superpowers, physicists suggest in a paper to appear in *Physical Review Letters*.

Simulations with the proposed fluid system find that it could disguise objects from many wavelengths of visible light, lead author Jiping Huang of Fudan University in Shanghai and colleagues report. What's more, the system would be tunable, giving researchers control over the light-contorting particles.

The ability to twist and contort light in unusual ways has been demonstrated in a special class of materials called metamaterials. New metamaterial designs may

2. Experiment – Equilibrium

Background of ER Fluids

- ER (electrorheological) fluids? PM-ER (polar molecule dominated ER) fluids?
- ER particles + silicon oil

- Volume fraction fixed,
- Adjust parameters and re-meshing

Z.N. Fang, H.T. Xue, W. Bao, Chem. Phys. Lett. 441 (2007) 314–317.

1.8

1.6

0.4

Local electric field between two ellipsoids

0.20 The yield stress between two short axis chained ellipsoid Yield Stress (kPa) 0 10 0 particles is the largest. Wei BAO, et al., J. Phys.- Cond. Mat. 22 (2010) 324105 0.00 0.8 0.0 0.2 0.6 1.0 0.4 x1e-7 E (kV/mm) x 1e-8

S. Henley and F. E. Filisco, Inter. J. Mod. Phys. B, 16 (2002) 2286 – 2292.

Experimental Setup

Haake Mars II rheometer → Electrorheoscope

Modified by Tan P, Liu D.K, Jia Y, Zhou L.W. et al

Simultaneous observation and comparison of lamellar structure and shear stress of the PM-ER fluids

Simultaneous measurement of ER shear stress and observation of lamellar structures

3.2 **Simulation**:

Method and Theory

- Molecular dynamics (MD) based on Newton's second law of motion
 - -- Large amount of calculation, time-consuming
- Two phase flow based on Onsager's principle with COMSOL

-- Easy to learn, quick calculation, powerful

 The Onsager's principle of minimum energy dissipation rate is about the rules governing the optimal paths of deviation and restoration to equilibrium.

$$\eta \dot{\alpha} = -\frac{\partial F(\alpha)}{\partial \alpha} + \xi(t)$$

$$A \approx \left[\frac{\eta}{2}\dot{\alpha}^{2} + \frac{\partial F(\alpha)}{\partial \alpha}\dot{\alpha}\right]\Delta t$$
$$A (\vec{J}, \vec{V}_{S}) = \vec{F} + \Phi \quad \text{Minimum}$$

L. Onsager and S. Machlup, *Phys. Rev.* **91**, 1505-1512 (1953). L. D. Landau and E. M. Lifshitz, *Statistical Physics, 2nd Ed.*, London: Addison-Wesley Publishing Co., 1-484 (1969).

Onsager's Principle

• The modified Onsager action functional, A $A (\vec{J}, \vec{V_S}) = \vec{F} + \Phi$

Free energy

$$F[n(\vec{x})] = \frac{1}{2} \int G_{ij}(\vec{x}, \vec{y}) p_i(\vec{x}) n(\vec{x}) p_j(\vec{y}) n(\vec{y}) d\vec{x} d\vec{y}$$
$$-\int \vec{E}_{ext}(\vec{x}) \cdot \vec{p}(\vec{x}) n(\vec{x}) d\vec{x} + \frac{\varepsilon_0}{2} \int \left(\frac{a}{|\vec{x} - \vec{y}|}\right)^{12} n(\vec{x}) n(\vec{y}) d\vec{x} d\vec{y},$$

Dissipation

$$\Phi = \int \left(\frac{1}{4}\eta_{s} [\partial_{i}(\vec{V_{s}})_{j} + \partial_{j}(\vec{V_{s}})_{i}]^{2} + \frac{\gamma}{2n}J^{2} + \frac{1}{2}K(\vec{V_{f}} - \vec{V_{s}})^{2}\right) d\vec{x}$$

J. W. Zhang, X. Q. Gong, C. Liu, W. J. Wen, P. Sheng, *Phys. Rev. Lett.* 101, 194503 (2008) 18

Onsager's Principle

J. W. Zhang, X. Q. Gong, C. Liu, W. J. Wen, P. Sheng, *Phys. Rev. Lett.* 101, 194503 (2008)

COMSOL Simulation a. Model Establishment

b. Geometry

c. Parameters

🗊 Const	tants			×	
Name	Expression	Value	Description		
omega	10*pi[rad/s]	31.41592	Angular velocity	^	
rhof	960	960	density of fluid		
etaf	0.01	0.01	viscosity of fluid		
ef	2	2	dielectric constant of fluid		
a	5e-7	5e-7	radius of particle		
mess	1.2e-12	1.2e-12	mess of one particle		
es	40	40	dielectric constant of particle		
ec0	1000000*0.4	4e5	E filed		
r0	0.0000011	1.1e=6	le-6 smallest distandence between two particles		
ebsilon0 6.6e-1 0.66 energy constant of repulsive potential					
tstep	0.00000001	1e-9	time step		
naa	6.022*10^23	6.02	Avogadro's constant		
				~	
OK Cancel Apply Help					

d. Expressions

🐝 Scalar Expressions 🛛 🛛 🔀					
Name	Expression	Uni t	Description		
lambd	-2*p2	Pa	Lagrange multiplier		
rhos	mess*nn+(1-fs)*rhof	mol/m ³	solid denstity		
kk	9*fs*etaf/(2*a^2)	mol/m ³	valve of constant K		
arfa	6*pi*etas*a	[]	coefficient of stokes		
etas	(etaf*exp (0.6/ (0.698	<u>í</u>	viscosity of particle		
ff1	nn*diff(mun, r)	Ω.	density froce in r dir		
ff2	nn*diff(mun, z)	0	density froce in z dir		
xs	(es-ef)/(es+2*ef)*a^3		coefficient of interfo		
el	ec0+(irrad1)*(t>0)	0	local electric		
pp	el*xs	[]	initial dipole moment	~	
OK Cancel Apply Help					

el: Local electric field, ff1&ff2: Conservative force,

kk: Stokes drag force density

$$K = 9 f_s \eta_f / 2a^2$$

e. Integration Coupling Variables

dest() operator

Irrad1=-((-2)/(((r-dest(r))^2+(z-dest(z))^2)^3)
*dest(nn)*dest(pp2))*((sqrt((r-dest(r))^2 +(z-dest(z))^2)<=10*a)*(sqrt((r-dest(r))^2 +(z-dest(z))^2)>=2.1*a))

dest() is a operator to create convolution integral

$$[\vec{E}_{l}(\vec{x})]_{i} = [\vec{E}_{ext}(\vec{x})]_{i} + \int G_{ij}(\vec{x},\vec{y}) p_{j}(\vec{y})n(\vec{y})d\vec{y}$$

dest(r)

• r

e. Boundary Conditions

	Oil phase	Particle phase	Concentration
1	Axial symmetry	Axial symmetry	Symmetry / Insulation
2	Logarithmic wall function	Wall / No slip	Symmetry / Insulation
3	Sliding wall / omega*r	Sliding wall / omega*r	Symmetry / Insulation
4	Logarithmic wall function	Wall / No slip	Symmetry / Insulation

COMSOL pattern simulations of upper (L) and lower (R) electrodes

Experimental observation

Conclusion: Static and Dynamic Rings

The angular velocity changes along the radius. Regions with high velocity and low velocity exist in the subdomain.

It is the dynamic ring that have the maximum concentration and velocity.

4. Future Work

- Pattern and force with different slip lengths
- Quantitative relations between shear stress and lamellar structures
- Relation of patterns and shear stress under AC field
- Different temperature effect
- -- All students in soft matter group must study COMSOL Multiphysics

Expending to biophysics and granules

We should spread COMSOL to China's western region such as Xinjiang and Gansu

TRPchannels in mechanosensation, Current Opinion in Neurobiology 2005, 15:350-357

Thank you very much

State Key Laboratory of Surface Physics and Physics Department Fudan University