Multiphysics Simulation of an Ultrasonic Piezoelectric Motor

P. A. Carvalho¹, C. J. Nycz¹, K. Y. Gandomi¹, and G. S. Fischer¹

Robotics Engineering, Worcester Polytechnic Institute, Worcester, MA, United States

Bearing

Rotor

INTRODUCTION: Piezoelectric motors provide a suitable alternative where traditional actuators may be insufficient. We extend the work of [1] by simulating an ultrasonic traveling wave resonant motor based on the Shinsei Corporation USR30 (Japan) with a single mode electrode pattern that can be driven by two 90 degree shifted sine waves.

Cover

EIGENFREQUENCY STUDY: Determines the resonant modes of the stator. The mode corresponds to the shape the stator will assume if driven at a particular eigenfrequency.

Non-

OPERATING PRINCIPLES:

- Ultrasonic motors rely on the reverse piezoelectric effect to generate motive force.
- Traveling waves can be generated by sequentially exciting different portions of the ceramic element such that two interfering standing waves offset by pi/2 in both space and phase are created.

Figure 3. Results of eigen-frequency searching for 40 modes around 40 kHz. Relevant results shown above. (a) Mode 1 at 3.1 kHz (b) Mode 2 at 6.9 kHz (c) Mode 3 at 16.6 kHz (d) Mode 4 at 29.1 kHz (e) Mode 5 at 43.2 kHz (f) Mode 6 at 58.3 kHz (g) Mode 7 at 73.5 kHz

FREQUENCY DOMAIN **STUDY**: The results of a frequency sweep from 5kHz to 75kHz at 20 Hz increments is shown in 4. The overall Figure maximum displacement in the Z direction was observed to be 1.88 μ m.

Figure 2. Schematic drawings of the modeled stator with bonded piezoelectric elements. (a) Side-View (b) Cutaway-View (c) Top-View (d) Bottom-View with electrode pattern

MODEL SETUP: Ultrasonic traveling wave resonant motors are comprised of a stator and a rotor. The USR30 stator was simulated using COMSOL 5.3a as per the following steps:

frequency. Resonant frequencies are noticeable

TIME DOMAIN STUDY: Settling time and tangential velocity were measured via boundary probes. The motor settles to a steady state within 1.6 ms. Under simplifying assumptions, the simulated motor has a rotational speed at resonance of approximately 120 rpm.

Figure 5. Results from the Time Domain Study showing settling time and tangential velocity of the stator at steady state.

Piezoelectric Multiphysics Module is Imported

Electrostatics	
Considers only ceramic elements	•
• Top of elements is considered ground	• Fixed (

Cal	lid	Mach	anico
20	IIU	wech	dnics

- Considers all Components of Stator
- Constraint to Inner Circumference of Stator

Material	Density	Poisson's	Young's
	Kg/m ³	Ratio	Modulus [GPa]
Copper	8960	0.33	117
Epoxy	3500	0.43	0.7
PZT-5H	7500	N/A	N/A

Table 1. Basic material properties for the three materials used in the simulation.

CONCLUSIONS: A multiphysics model for a piezoelectric ultrasonic resonant motor is presented. Further work can include:

- modeling the rotor with frictional contact
- evaluating the damping parameters more precisely
- validating the model empirically through the measurement of modeled properties in a real motor.

REFERENCES:

- Patel, P. & Manohar, P. Design and simulation of piezoelectric ultrasonic micro motor.
- Ultrasonic motor. http://www.shinsei-motor.com/ English/techno/ultrasonic_motor.html. 2. Accessed: 2018-08-31. (2009).

Excerpt from the Proceedings of the 2018 COMSOL Conference in Boston