

Ch. Koller¹ ,M.Fromhold², A. Nemecek¹

1. Department of Electrical Engineering, FH Wiener Neustadt, Wiener Neustadt, NÖ, Austria

2. School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom

INTRODUCTION: Cold atom based technology is an interesting platform to create novel quantum sensing devices for inertia, gravity or magnetic fields [1]. Here we will show how chip-based cold atom traps can be modelled using COMSOL[®] to allow the design of integrated sensor systems.

This will lead to a further integration of the setup, without disturbing the functionality. As shown in figure 4 the trap position can be adjusted by varying the current ratio of side and central wire.

C)

Figure 1. Layout (a) and Microscope image of finished chip (b) and matter wave interferometry (c) (courtesy Schmiedmayer Group, Vienna) **COMPUTATIONAL METHODS:** Chip based traps allow manipulation of ultra cold atoms using magnetic fields and their gradients [2]. Precisely atoms in a low field seeking state ($m_f g_f > 0$) will assemble at the position of a local minimum of the magnetic field present. Such a minimum in the field can be generated using a chip

Figure 4. Dependence of the trap position on the current ratio between central (Jc) and side wire (Js)

RESULTS: The precise knowledge of the magnetic filed configuration allows to solve the Schrödinger equation

$$\left[-\frac{\hbar^2}{2m}\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) + V(x,y)\right]\psi(x,y) = E\psi(x,y)$$

with $V \approx m_f g_f \mu_B |\mathbf{B}|$. Figure 5 shows the forming wave function for Rb87 within the trap. Adaptive mesh adjustment of the Eigenvalue computation

based wire and an offset field B_{ext} . Ideally – assuming an infinitely thin wire – this trap will form at a distance of $h = 2I/B_{ext}$ from the wire, where I is the current in the wire. We realize this in COMSOL[®] by solving

$$abla imes H = J$$
 $abla imes A imes B$
and $B = \mu_0 \mu_r H + B_{ext}$

on a 2D domain.

The finite size of a real wire will result in a deviation the position of the center of the trap (see figure 1 & 2). By adding two additional wires on the chip with currents counter-propagating the central wire, it becomes possible to omit the external magnetic field.

allows bridging the different aspect ratios of the problem easily.

Figure 5. Solution of the Schrödinger Equation

CONCLUSIONS: It was shown that the for the realization of interferometric quantum sensors necessary computation of the wave function of cold atoms within a chip based magnetic trap can be simulated efficiently using COMSOL[®]. This opens the pathway to more complicated structures based on CMOS technology as logic and optical elements. **REFERENCES**:

2.

- Keil M et al. 15 Years of cold matter on a chip, J. of Mod. Optics, 63:18, 1840-1885
- Folman R. Microscopic atom optics, Advances in Atomic, Molecular, and Optical Physics, 48, 263-356 (2002)

Excerpt from the Proceedings of the 2018 COMSOL Conference in Lausanne

Figure 2. Finite size effect of the trapping wire. The position as well as the gradient of trap is altered.

Figure 3. Comparison of the magentic field minima (analytical vs. numerical)