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Abstract 

 
This study investigates the effect of uniform magnetic 

field on the deformation of a ferrofluid droplet in a two 

dimensional (2D) simple shear flow by means of 

numerical simulation. The magnetic field is applied in 

a perpendicular direction to the flow direction. A 

numerical scheme called level set method in 

combination with laminar two phase flow under fluid 

flow module is used to solve the flow field both inside 

and outside of the droplet while level set method is 

required to track the dynamic motion of the droplet 

interface which is suspended in another immiscible 

medium. A constant shear rate is applied by using a 

velocity of the same magnitude but in opposite 

direction on the top and bottom wall. Magnetic field 

both inside and outside of the droplet is simulated 

using the AC/DC module and it is applied to the flow 

domain using volume force feature under laminar flow 

module. We found that at a low shear rate with 

increasing magnetic field strength, the magnetic field 

plays a dominant role on the deformation of the droplet 

and also the droplet is found to orient itself more along 

the direction of magnetic field. On the other hand, at 

high shear rate the deformation and orientation of the 

droplet is determined predominantly by shear flow 

although the magnetic field has a considerable effect 

at higher strengths. It is also found that the flow field 

inside and outside of the droplet changes at different 

conditions.  

 

1. Introduction 

 
Emulsions are liquid droplets dispersed in another 

immiscible phase. When subjected to shear flows, the 

droplets may break up. Understanding the dynamics of 

droplets in shear flows is of great importance to a 

variety of technological and industrial applications 

that utilize emulsions, including cosmetics, food 

production and polymer processing. For example, in 

blending molten polymers, the distribution of droplet 

size and shape is critical to the rheology and physical 

properties of the polymer system. 

 

A single droplet in simple shear flow serves as an 

excellent model problem to understand droplet 

dynamics and can provide fundamental insights to 

more complex emulsion systems[1,2]. Following the 

pioneering work of Taylor[3,4], numerous 

experimental[5–7], theoretical[8], and numerical 

studies[9–12] have been carried out to investigate the 

deformation and breakup of a Newtonian droplet 

suspended in shear flow of another viscous Newtonian 

fluid.  

 

Magnetic fields have also been demonstrated to 

control the dynamics of single droplets[13,14] or 

emulsion systems[15–17]. To use magnetic 

manipulation, either the droplet or suspending fluid 

needs to be a ferrofluid – a dispersions of magnetic 

nanoparticles (typical diameter around 10 nm, and 

typical volume fraction 5%). Multiphase ferrofluid 

droplets have promising biomedical applications due 

to their ability to be delivered at specific site with the 

help of proper manipulation of a magnetic field. A 

notable biomedical application is treatment of retinal 

detachment[18] by guiding a ferrofluid droplet inside 

retinal. Magnetic control of droplet formation has also 

been extensively used in microfluidics. Liu[19] and 

Wu[20] studied the ferrofluid droplet deformation 

under uniform magnetic field. 

 

However, till now few have studied the deformation of 

ferrofluid droplets in a simple shear flow under the 

influence of a uniform magnetic field. Recently, 

Jesus[21] performed three-dimensional numerical 

analysis on the droplet dynamics and field induced 

deformation of a ferrofluid droplet in another 

Newtonian fluid. One significant advantage of using 

the magnetic fields in compared to electric fields is 

that magnetic field can be applied at arbitrary 

directions with ease, while the direction of electric 

fields is often limited by the placement of electrodes.  

 

By using two-dimensional (2D) direct numerical 

simulations, this paper investigates the dynamics and 

deformation of a ferrofluid droplet in a simple shear 

flow under a uniform magnetic field that is 

perpendicular to the flow domain. For computational 

efficiency, we have chosen to use 2D simulations in 

order to study a wide range of parameter space i.e. 

capillary number, magnetic bond number. Our 



numerical simulation, built with commercial FEM 

solver, models the dynamic deformation of droplet 

interface by using the level-set method, and couples 

the magnetic and flow fields. 

 

The remainder of the paper is organized as follows: in 

section 2, the mathematical model and numerical 

method with COMSOL settings are described. In 

section 3, we first present numerical results obtained 

from droplet deformation in simple shear flow only 

and validate our results against existing theory. We 

then examine the effect of magnetic field on the 

droplet deformation and orientation angles by 

considering the field direction perpendicular to the 

flow domain, magnetic bond number and capillary 

number. Finally, we conclude our major findings in 

section 4.  

 

2. Numerical Simulation Method 

 
2.1 Level set method 

 
In our model, we have used the conservative level set 

method to track the dynamic evolution of the interface 

between the droplet and suspending medium. The 

level set function,  is an auxiliary scalar function to 

represent the phases of the two fluids which has a 

value of zero in one domain and 1 in another domain. 

The value of  varies smoothly from 0 to 1 across the 

interface and  = 0.5 defines the position of the 

interface. The level set function  which is advected 

by the velocity field by[22,23]: 
d

dt
+ (𝐮) =  𝛾 ( −  (1 − )

 

| |
) (1) 

where u, γ and  determine the velocity field, amount 

of reinitialization and thickness of the interface 

respectively. The terms on the left hand side of the 

equation represents the motion of the interface while 

the terms on the right hand side is required for 

numerical stability. The level set function,  can also 

be used to find the unit normal to the interface, n which 

is given by: 

𝒏 =


||
 (2) 

With the level set method, the two immiscible fluids 

are treated as a single phase flow but the material 

properties vary according to the level set value. Here, 

a linear average is used to calculate the density (), 

dynamic viscosity (), magnetic permeability () and 

magnetic susceptibility () which are related to  

through the following equations: 

𝜌 =  𝜌𝑐 + (𝜌𝑑 − 𝜌𝑐), 𝜂 =  𝜂𝑐 + (𝜂𝑑 − 𝜂𝑐)𝜙 

𝜇 =  𝜇𝑐 + (𝜇𝑑 − 𝜇𝑐)𝜙, 𝜒 =  𝜒𝑐 + (𝜒𝑑 − 𝜒𝑐)𝜙 

where subscripts c and d represent the continuous and 

droplet phase respectively. 

 

2.2 Governing Equations 

 

The motion of an incompressible, immiscible 

ferrofluid droplet in another incompressible, 

immiscible medium under the effect of a uniform 

magnetic field is governed by the following continuity 

and momentum equations: 

∇ ∙ 𝐮 = 0 (3) 

𝜌
D𝐮

Dt
=  −∇𝑝 + ∇ ∙ 𝜏 + F𝜎 + F𝑚 (4) 

where, 
𝐷𝐮

𝐷𝑡
  represents the total derivative of the 

velocity field, u. The right hand side of the equation 

(4) represents the force terms due to pressure, 

viscosity, surface tension (F𝜎) and magnetic field (F𝑚) 

respectively.  The viscous stress tensor 𝜏  can be 

expressed as: 𝜏 =  [𝜂(∇𝐮 + (∇𝐮)𝑇)]. The surface 

tension force, F𝜎 can be defined by: 

𝐅𝜎 = ∇ ∙ [𝜎{𝐈 + (−𝐧𝐧𝑇)}𝛿] (5) 

where,  is the surface tension coefficient, I is identity 

matrix,  is the Dirac delta function and n is the unit 

normal to the interface which can be calculated using 

equation (2). The Dirac delta function, 𝛿 can also be 

approximated using the level set function as: 

𝛿 = 6|𝜙(1 − 𝜙)||∇𝜙| (6) 

Assuming linear and homogeneous material 

properties, the different magnetic properties i.e. 

magnetic induction B, magnetization M and magnetic 

field H can be related using Maxwell magneto-static 

relationship through the following equations: 

𝐁 = 0,𝐇 = 0, 𝐌 =  𝐇 (7) 

𝐁 =  𝜇0(𝐇 + 𝐌) = 𝜇0(1 + 𝜒)𝐇 (8)
where  𝜇0  is the permeability of vacuum which is 

equal to 4𝜋 × 10−7 𝑁/𝐴2. A scalar potential  can be 

defined to satisfy the curl-free H i.e. 𝐻 =  −∇ which 

can be written as: 

∇ ∙ (𝜇∇) = 0 (9) 
In addition, the total magnetic force can be calculated 

using the magnetic stress tensors as: 

𝐅m =  ∇ ∙ 𝛕m = ∇ ∙ (μ𝐇𝐇T −
μ

2
𝐻2𝐈) (10) 

where, 𝛕m is the magnetic stress tensor for the applied 

magnetic field, H = |H| is the magnitude of the 

magnetic field and I is the second order identity tensor. 

The magnetic insulation on both the left and right 

walls are satisfied through the following equation: 

𝐧 ∙ 𝐁 = 0 (11) 

We introduced some dimensionless groups to reduce 

the number of variables and observe which 

dimensionless groups affect the droplet dynamics 

most. The dimensionless groups are defined as: 

Re =  
𝜌𝑐𝑅0

2𝛾̇

𝜂𝑐

 (12) 

Ca =  
𝜂𝑐𝑅0𝛾̇

𝜎
 (13) 



Bom =
𝑅0𝜇0𝐻0

2

2𝜎
 (14) 

where, Re, Ca and Bom represent Reynolds number, 

Capillary number and Magnetic bond number 

respectively. 

2.3 Schematic of numerical model 

 

Fig. 1 demonstrates the schematic illustration of a 

ferrofluid droplet suspended in another fluid medium 

in a simple shear flow under the application of a 

uniform magnetic field,  𝐇0. In this case, the magnetic 

susceptibility of the ferrofluid droplet was considered  

as 1 i.e. 𝜒𝑑  = 1 while it was considered zero i.e. 𝜒𝑐 =
0  for the suspending non-magnetic fluid. The 

subscript c and d represent the droplet and continuous 

phase respectively. The viscosity and density of both 

the phases are considered equal to each other i.e. 𝜂𝑐 =
 𝜂𝑑 

 
Figure 1. Schematic illustration of a ferrofluid droplet 

suspended in another medium in a simple shear flow under 

the application of uniform magnetic field, 𝐇0. 

 

and 𝜌𝑐 = 𝜌𝑑 . The height and width of the 

computational domain are 𝐻𝑑𝑜𝑚𝑎𝑖𝑛 =  𝑊𝑑𝑜𝑚𝑎𝑖𝑛 =
10𝑅0 where 𝑅0 is the radius of undeformed ferrofluid 

droplet which is equal to 50 m. Initially the ferrofluid 

droplet was placed at the middle of the computational 

domain. The surface tension is considered as  = 

0.0135 N/m.  Here, the top wall moves with a velocity, 

𝐮𝑡 =
1

2
𝛾̇𝐻𝑑𝑜𝑚𝑎𝑖𝑛𝑒𝑥  and bottom wall moves with a 

velocity,  𝐮𝑏 = −
1

2
𝛾̇𝐻𝑑𝑜𝑚𝑎𝑖𝑛𝑒𝑥  thus leading to a 

simple shear flow with constant shear rate 𝛾̇. Periodic 

flow condition was applied to both left and right walls 

in the x-direction. A uniform magnetic field, 𝐇0 was 

applied at arbitrary directions which is denoted by 

angle, . Here, the deformation and orientation angle 

of the droplet under the effect of magnetic field is 

studied. The deformation of the droplet is found out 

using dimensions L and B which are the lengths along 

the major and minor axes of the droplet respectively. 

Also, the orientation angle,  is defined as the angle 

between the positive x-axis and major axis of the 

droplet when the droplet undergoes deformation under 

the effect of both shear flow and magnetic field.  

 

2.4 COMSOL Settings 

 

Two phase laminar flow, level set method in 

combination of transient with phase initialization 

feature was used to solve the flow domain and to track 

the deformable interface of the droplet. The velocity 

of top wall and bottom wall was set as 0.0125 m/s and 

-0.0125 m/s respectively using the moving wall 

feature which produces a constant shear rate of 50 s-1. 

Another case was also studied using a different shear 

rate of 600 s-1. Periodic boundary condition was 

applied to both left and right walls in the positive x-

direction with zero pressure difference across them. 

The value of level set function,  was assigned as 1 

and 0 for the droplet phase and continuous phase 

respectively. The interface of the droplet was defined 

using initial interface condition. The reinitialization 

parameter, 𝛾 was equal to the maximum magnitude of 

the velocity in the flow domain and interface 

thickness,   was of the order as the same size of the 

mesh elements.  Additionally, magnetic field was 

applied to the flow domain and solved simultaneously 

using Magnetic fields, no currents interface from 

AC/DC module. In this case, the magnetic field was 

applied perpendicular to the flow domain i.e.  = 90. 

Magnetic insulation was applied to both left and right 

walls. The value of magnetic field strength, 𝐇0  was 

varied from 25000 A/m to 45000 A/m using the 

parametric sweep feature. Then we investigated the 

deformation and orientation angle of the ferrofluid 

droplet for the above mentioned cases. For creating the 

mesh, we used free triangular elements in the 

computational domain. PARDISO solver with nested 

dissection multithread algorithm was used to solve our 

computational model. 

 

3. Results and Discussions 

 
3.1 Validation of Numerical Model 

 

Before moving on to our intended study, we validated 

our model by comparing our results against Taylor’s 

deformation theory in a simple shear flow for different 



capillary number, Ca. According to Taylor[3,4], the 

deformation of a ferrofluid droplet suspended in 

another medium with same viscosity (𝜂𝑐 =  𝜂𝑑)  and 

density (𝜌𝑐 = 𝜌𝑑) can be calculated as: 

 
Figure 2. Validation of numerical model. Comparison of 

simulation results against Taylor’s theory. 
 

 

𝐷 =  
𝐿 − 𝐵

𝐿 + 𝐵
=  

19𝜂𝑑 + 16𝜂𝑐

16𝜂𝑑 + 16𝜂𝑐

Ca =
35

32
Ca (15) 

 

where the capillary number, Ca can be found from 

equation (13). Fig. 2 represents the comparison of 

simulation results against Taylor’s theory for different 

capillary numbers, Ca. It shows that, with increasing 

shear rate, the deformation of the ferrofluid droplet 

increases. Also, it can be seen that both the results 

agree well with each other although at high capillary 

number, Ca there is little discrepancy between the two 

results. The reason maybe due to two dimensional 

nature of the simulation and also Taylor’s theory 

works well for small capillary number, Ca. But the 

results are still satisfactory since even at a higher 

capillary number (Ca = 0.233), the error of the 

deformation of ferrofluid droplet between the 

simulation results and Taylor’s theory was 

approximately 8%. Fig. 3 illustrates the shape of the 

droplet for the different cases which clearly proves our 

argument that the deformation of the droplet increases 

 

Figure 3. Outline of the droplet for different capillary 

number, Ca. 

with increasing shear rate. Furthermore, it can be seen 

that the droplet follows the direction of shear flow 

more with increasing capillary number, Ca. 

 

3.2 Droplet in simple shear flow with a magnetic 

field perpendicular to the flow ( = 90) 
 

When a magnetic field is applied to a ferrofluid droplet 

suspended in a simple shear flow, the droplet deforms 

even more due to the additional effect of magnetic 

field strength on the droplet interface. In order to see 

the effect of magnetic field we plotted the deformation 

of the droplet at various capillary number at a fixed 

magnetic bond number. In this case, the strength of the 

magnetic field was considered as 2.5104 A/m.  

 
 
Figure 4. Effect of magnetic field in a simple shear flow on 

the deformation of ferrofluid droplet. Deformation, D vs 

time. 
 

Fig. 4 represents the effect of magnetic field in a 

simple shear flow on the deformation of the droplet. It 

can be seen that at all capillary numbers, Ca when we 

apply the magnetic field the deformation of the droplet 

increases even more than shear flow without magnetic 

field. But for the low shear rate case, when we apply 

the magnetic field the deformation of the droplet 

increased about 5 times in compared to the shear flow 

only while for the high and moderate shear flow cases, 

the deformation of the droplet increased about 1.2 

times after the application of magnetic field. The 

reason is that at low shear rate the magnetic field takes 

total control on the deformation of the droplet. On the 

other hand, for the high shear rate case the deformation 

of the droplet is predominantly controlled by the shear 



flow although the magnetic field has considerable 

effect on the deformation of the droplet at higher 

values. Fig. 5 depicts the outline of the droplet at 

various capillary numbers, Ca after the application of 

magnetic field and it clearly proves our argument 

stated above. We also studied the effect of magnetic 

field on the orientation of the droplet.  

  
Figure 5. Outline of the droplet for different capillary 

number, Ca after the application of magnetic field. 
 

Fig. 6 represents the orientation angle of the droplet at 

steady state for different capillary numbers, Ca with 

and without the application of magnetic field. It can be 

clearly seen that when magnetic field is applied the 

orientation of the droplet increases at all shear rates. 

Also, at low shear rate the droplet orientation is totally 

controlled by the magnetic field alone and that’s why 

the droplet orientation angle is closer to 90 in this 

case. But at high and moderate shear rates, the shear 

flow becomes dominant and the orientation angle of 

the droplet is predominantly determined by the shear 

flow. As a result, the orientation angle is found closer 

to 45 than 90 in this case.  

 
Figure 6. Effect of magnetic field in a simple shear flow on 

the orientation of ferrofluid droplet. Orientation angle,  vs 

Ca. 

 
 

Figure 7. Velocity field and magnetic field strength for Ca 

= 0.0194, Re = 0.0015 at  = 90. (a) Bom = 1.4549; (b) Bom 

= 2.8515; (c) Bom = 4.7138. 

 

 

Fig. 7 represents velocity and magnetic field strength 

profiles at steady state for Ca = 0.0194, Re = 0.0015 at 

different Magnetic bond numbers, Bom  while Fig. 8 

represents velocity and magnetic strength profiles at 

steady state for Ca = 0.2333, Re = 0.018 at different 

magnetic bond numbers , Bom . From the velocity 

fields it is seen that there is circulation inside the 

droplet due to the flow sorrounding the droplet in the 

domain which contributes considerably in defing the 

shape of the droplet. The arrow surface denotes the 

direction of velocity in the domain. The droplet 

experiences maximum shear stress on the poles of the 

droplet. Also, the shape of the droplet from the 

velocity figures gives us a clear illustration that with 

increasing magnetic field strength, the droplet 

deformation increases and the droplet tends to orient 

itself more along the direction of the magnetic field. 

From the magnetic field strength profiles it is clear that 

the magnetic field is uniform both inside and outside 

of the droplet. The magnetic field lines are also parallel 

to each other although the lines gets slightly deflected 

at the interface of the droplet due to change in 

magnetic susceptibility at the interface of the droplet.  
 



 

 
 

Figure 8. Velocity field and magnetic field strength for Ca 

= 0.2333, Re = 0.018 at  = 90. (a) Bom = 1.4549; (b) Bom 

= 2.8515; (c) Bom = 4.7138. 

 

The droplet also experiences maximum magnetic field 

strength at the poles of the droplet while it is least in 

magnitude along the equator of the droplet.   
 

4. Conclusions 
 

The influence of magnetic field perpendicular to the 

flow domain on the droplet deformation and 

orientation angle in a simple shear flow is 

systematically studied in this paper. At a low shear rate 

(Ca  0.02), the deformation and orientation angle of 

the ferrofluid droplet is determined by the magnetic 

field strength. With increasing magnetic field strength, 

the deformation was found to increase and the droplet 

orientation angle was found to be closer to 90. But at 

a high shear rate (Ca  0.25), the deformation and 

orientation angle is controlled by the dominant shear 

flow although at higher values of magnetic field 

strength it has considerable effects on the deformation 

and orientation angle of the droplet. For example, at a 

very high magnetic bond number ( Bom  5), the 

orientation angle of the droplet was found to be closer 

to 60 than 45 due to the additional effect of the 

magnetic field strength. Furthermore, the flow field 

inside and outside of the droplet has also a great 

contribution in defining the shape of the ferrofluid 

droplet.  
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