Relativistic Quantum Mechanical Wave Functions for Fermion Particles in Electric or Magnetic Fields

Anthony J. Kalinowski¹
1. Consultant/ 4 Greentree Drive, East Lyme, CT, USA

Introduction: Find the relativistic quantum mechanics steady state wave function $\Psi_m(x,y,z,\omega)$ as a solution to the Dirac equations with pre-existing magnetic and electric potentials \bar{A} , ϕ . The probability density, ρ , of a particle's location is given by $\rho = \Sigma |\Psi_m|^2 = 1..4$

Computational Method: The EM Dirac equations [1] for the behavior of a particle of mass m with M=mc/ \hbar , c=light speed, \hbar =Planck's constant, $\bar{\mathbf{A}}$ = $\bar{\mathbf{A}}$ e/ \hbar ,

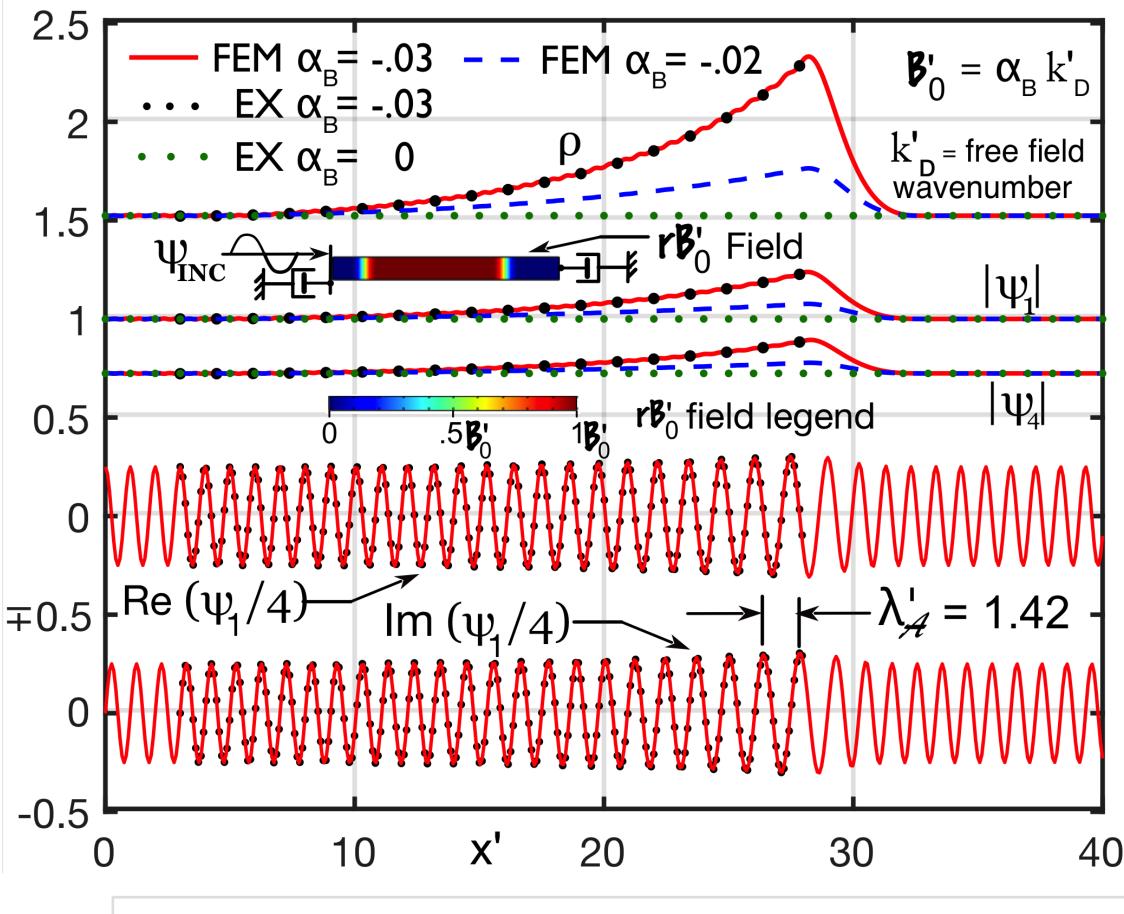
Φ=eφ/c \hbar , e=charge: are solved with

$$\begin{split} &\frac{1}{c}\frac{\partial\Psi_{1}}{\partial t} + \frac{\partial\Psi_{4}}{\partial x} - i\frac{\partial\Psi_{4}}{\partial y} + \frac{\partial\Psi_{3}}{\partial z} + i\Psi_{1}(\Phi + M) \\ &+ i(i\mathbf{A}_{y}\Psi_{4} - \mathbf{A}_{z}\Psi_{3} - \mathbf{A}_{x}\Psi_{4}) = 0 \end{split}$$
 $&\frac{1}{c}\frac{\partial\Psi_{2}}{\partial t} + \frac{\partial\Psi_{3}}{\partial x} + i\frac{\partial\Psi_{3}}{\partial y} - \frac{\partial\Psi_{4}}{\partial z} + i\Psi_{2}(\Phi + M) \\ &+ i(A_{z}\Psi_{4} - \mathbf{A}_{x}\Psi_{3} - i\mathbf{A}_{y}\Psi_{3}) = 0 \end{split}$ $&\frac{1}{c}\frac{\partial\Psi_{3}}{\partial t} + \frac{\partial\Psi_{2}}{\partial x} - i\frac{\partial\Psi_{2}}{\partial y} + \frac{\partial\Psi_{1}}{\partial z} + i\Psi_{3}(\Phi - M) \\ &+ i(i\mathbf{A}_{y}\Psi_{2} - \mathbf{A}_{z}\Psi_{1} - \mathbf{A}_{x}\Psi_{2}) = 0 \end{split}$

COMSOL'S "Coefficient-Form PDE".

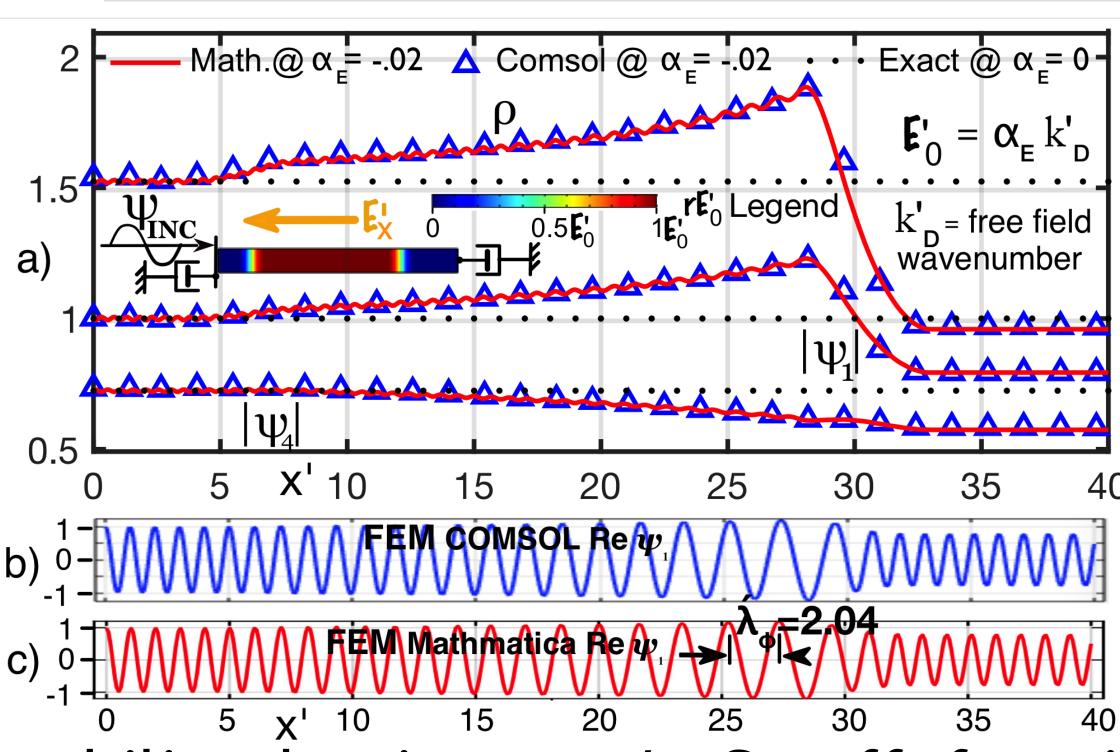
When the wave vector $\bar{\mathbf{k}}$ is in the xy plane, $\partial \Psi_m/\partial z$ terms drop out and the 1st & 4th eqs. decouple, where Ψ_1, Ψ_4 are solved alone.

Results: • **Fig.1** <u>Magnetic & Field On</u> below validates the Ψ_1 =1e^{-i ω' t'} end driven *Wave Guide* PW COMSOL FEM \leftrightarrow Mathematica *Exact* wave propagation vs $x'=x/\lambda_D$



and is shown for 3 values of magnetic field strength parameter $\alpha_B = \{.0, -0.02, -0.03\}$. The magnetic \mathbf{g}' field effect gradually increases the λ'_A spatial wave length and ρ probability density vs +x'.

• **Fig.2** <u>Electric E' Field On</u> below validates the $Ψ_1=1e^{-iω't'}$ end driven *Wave Guide* PW COMSOL FEM→Mathematica FEM wave propagation vs x'=x/ $λ_D$

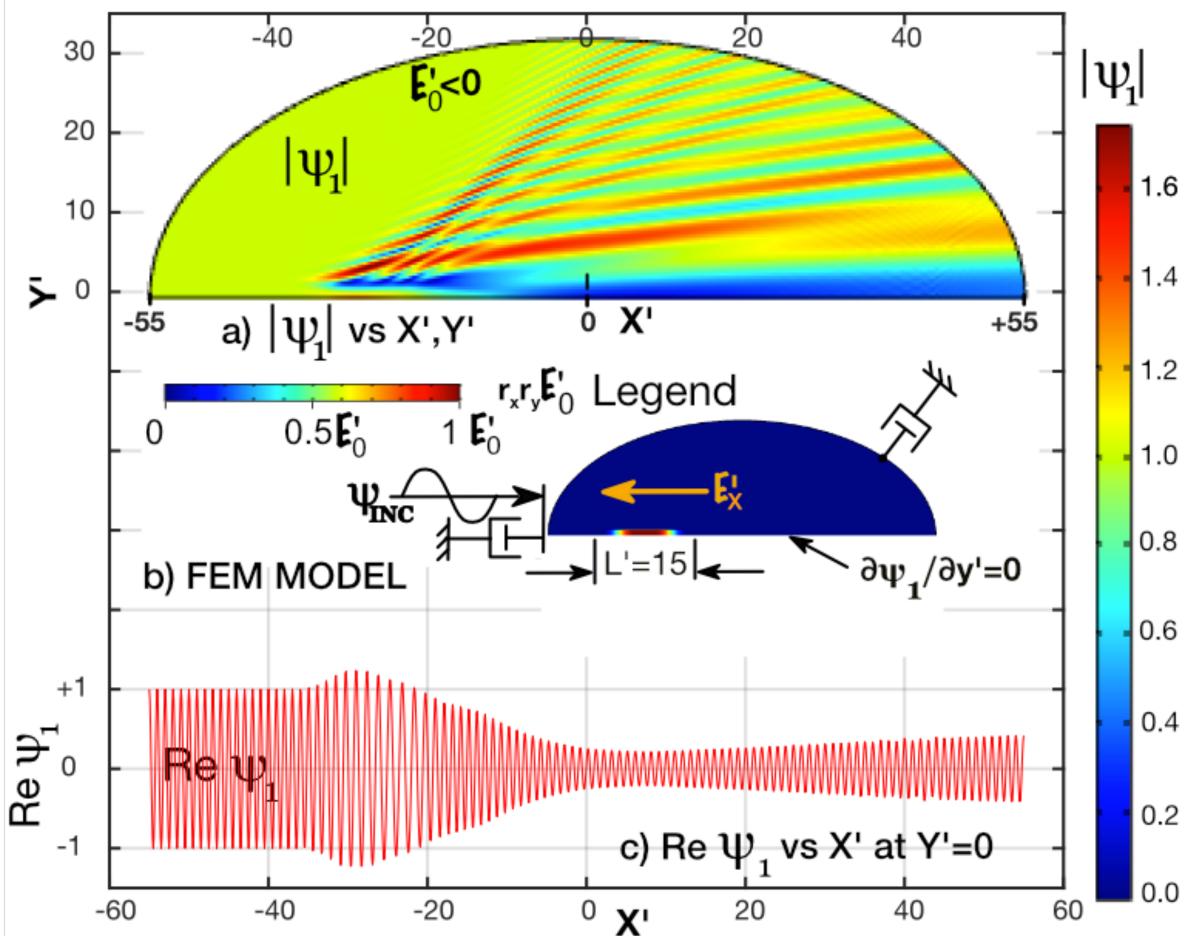


and is shown for 2 values of electric field strength parameter $\alpha_E=\{.0, -0.02\}$. The electric \mathbf{E}' field effect gradually increases the λ'_{ϕ} s p a t i a l wave length and ρ prob-

ability density vs +x'. Cutoff functions are r_x , r_y .

• **Fig.3** <u>Electric ξ' Field On</u> upper right is like Fig. 2 case (except roof of wave guide removed) where a L'=15 x W'=4 finite ξ' field (α_E =-0.02) is embedded in a

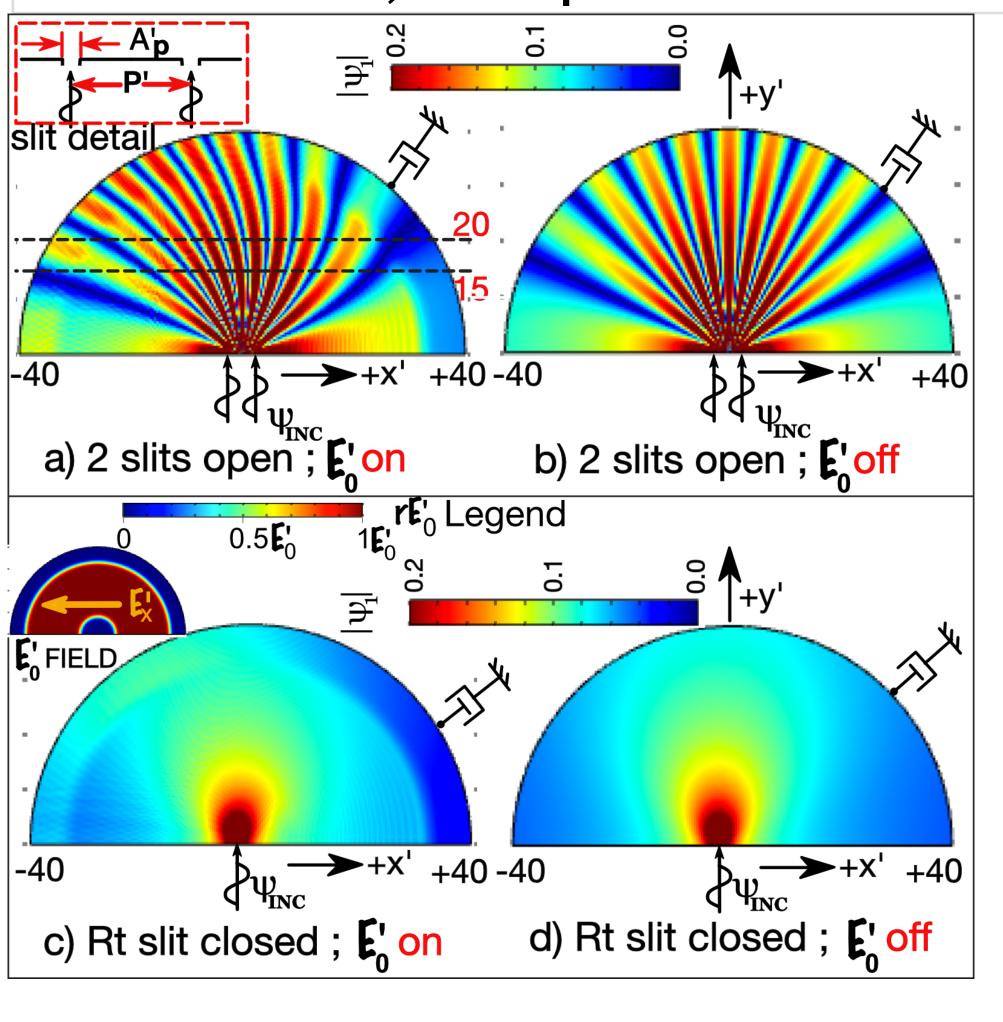
free field and subject to an incident $\Psi_1 = 1e^{-i(x'k'_D-\omega't')}$ PW. Unlike the Fig.2 waveguide, due to diffraction, the Fig.3c downstream $\Psi_1(x')$ field slowly builds back



up towards the incident 1.0

1.6 free field
1.4 value. Again,
1.2 the \(\Psi\)_1 spatial
1.0 wavelength
1.0 gradually increases while
1.0 passing thru
1.0 the \(\mathbb{E}'\) field \(\&\epsilon\)
1.0 downstream.

• Fig.4 2 Slit Demo; Electric \mathbf{E}' Field On vs Off Particles fired at 2 slits, is a classic quantum mechanics demo, represented by a $\Psi_1 = 1e^{-i(\mathbf{x}'\mathbf{k}'_D \cdot \boldsymbol{\omega}'t')}$ PW wave function incident upon the slits. Figs.4a and 4b compare bands of $|\Psi_1|$ constructive and destructive interference with the \mathbf{E}' field on vs. off. The effect of the \mathbf{E}' field (with electric field strength parameter $\alpha_E=-0.02$) is to curve the fan blade like bands compared to the straight bands with the \mathbf{E}' field turned off. Due to the angular shape of the interference bands, at some points directly in line with the slit, it is possible to have a lower location



probability than a corresponding shifted point off the slit line. Closing the right s l i t, t h e interference patterns are gone as seen in Figs. 4c & 4d where the probability is highest inline with the slit.

Conclusions: The *Coefficient-Form PDE* option successfully validated the EM time independent Dirac equation solutions. In the 2 slit demo, banded downfield groupings of particle locations, as inferred by (4b), are also observed experimentally.

References: 1. P. Strange, Relativistic Quantum Mech., Camb. Univ. Press 1998