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Abstract:  COMSOL is used for obtaining the 
quantum mechanics wave function {Ψn(x,y,z,ω)} 
as a solution to the time  independent  Dirac 
equations while determining the effect of a 
preexisting magnetic vector potential Ā field or 
scalar electric potential φ field on the results. The 
probability evaluation of a particle being at a 
spatial point can be treated by a) the “matrix 
mechanics formulation” or b) the “wave function 
formulation”. The latter approach is used herein, 
because it involves solving field partial differential 
equations, thus is directly adaptable to COMSOL.  
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1. Introduction 

The purpose of this paper is to illustrate the use 
of COMSOL for obtaining the quantum mechanics 
wave function Ψn(x,y,z,ω) (representing matter 
waves) as a solution to the time independent Dirac 
equation. The Dirac equation is employed in 
particle physics and historically provided the first 
combined application of quantum mechanics and 
relativity theory by introducing a four component 
wave function {Ψn}, n=1,2,3,4 (e.g. in contrast to 
the one component Schrödinger wave function Ψ). 
Historically, {Ψn} described the behavior of 
fermion type particles (e.g., electrons) and further 
predicted the existence of antiparticles (e.g., 
positrons) even before they were observed 
experimentally. COMSOL MULTIPHYSICS® 
Usage: the Coefficient-Form PDE "t ime 
independent" study is employed. Archive Refs. 
[1-2] treat solving the Quantum Mechanics Dirac 
wave function; however, this is the first COMSOL 
application towards solving the Dirac equation for 
particles in the presence of a pre-existing magnetic 
or electric field. 

2. Governing Equations/Theory  

Governing equations for the behavior of a free 
fermion particle of mass m in the presence of a 

magnetic and electric field, are represented by the 
time dependent quantum mechanics Dirac 
equations (with wave function {Ψn(x,y,z,t)} as the 
dependent variables) and are given by [3]: 

where m=particle mass, c= light speed , e=particle 
charge  ℏ =h/(2π), (h is Planck’s constant), i=√(-1). 

Eqs.(2) relate the scaled vector potential Ā and 
scaled scalar potential Φ to the scaled vector magnetic 
B̄ field and electric Ē field ( Ā & φ are unscaled). 
2.1 Steady state  time independent form 

A 2-D form of  governing Eqs.(1) are solved in 
time independent problems using the COMSOL 
MULTIPHYSICS® Coefficient-Form PDE "Time 
independent" studies option. Two dimensional 
solutions are sought where the wave function 
depends on spatial coordinates x,y. Thus set Az=0  
and let Ψn gradients in the z direction drop out. 
Next get the steady state form of Eqs.(1) by 
substituting Eqs.(3) 

into the 2-D form of Eqs.(1) getting the following 
pair of pde’s Eqs.(4a-b) and pair Eqs.(5a-b). The 



Eqs.(4a-b) in terms of {ψ1(x,y,ω),ψ4(x,y,ω)} are 
uncoupled from the Eqs.(5a-b) that are in terms of 

{ψ2(x,y,ω),ψ3(x,y,ω)}. Moreover, note that Eq.(4a) 
is just like Eq.(5a) and Eq.(4b) is just like Eq.(5b) 
(where ψ1↔ψ3 , ψ4↔ψ2 and ( )* is the complex 
conjugate). Thus the solution procedure for solving 
Eqs.(4a-b) is just like solving Eqs.(5a-b), therefore 
without loss in generality, we will focus on solving 
{ψ1(x,y,ω),ψ4(x,y,ω)}in the rest of the paper. 

2.2 Governing equations in presence of  
magnetic  potential    Ā′ field alone  (Φʹ=0) 

In [1], the coupled time independent form these 
two equations were solved as two simultaneous 
pde’s for ψ1&ψ4 . A different uncoupled approach 
is used herein. In Eqs.(4a-b), nice sized quantities 
are experienced during the computation process, 
by using primed non-dimensional independent variables 
and corresponding pde parameters, as defined by 
Eqs.(8a-b). The selection of scale values for {T,L}is 
treated in 2.4. With Φ′ =0, Eqs.(4a-b) are uncoupled 
by substituting  ψ4 from primed Eq.(4a) (in terms of ψ1 
and it’s derivatives) into primed Eq.(4b) getting the 
following Eqs.(7a-b) in terms of ψ1 alone. After 

solving Eq.(7a) for ψ1 (and spatial derivatives at 
point {x′=X′, y′=Y′}), the primed Eq.(4a) is used 

to post process ψ4 with Eq.(7c), where the primed 
scaled variables are defined by: 

 Magnetic Ā′ potential selection: A vector 
potential is selected given by Eqs.(9a), and 

substituting it into 6th of Eqs.(2), gives the 
corresponding Eqs.(9b) for the magnetic field B̄ : 

The size of Bʹ0 is selected large enough to feel 
the influence of the magnetic field on ψ1(x,y,ω), 
yet small enough to allow the wave function 
solution to continue as a propagating wave. We do 
this by comparing the size of the k′D2 term to the    
|A ′|2  term in Eq.(7b), where α2Β is defined as the 
ratio of these squared quantities via Eq.(10a). 

  The quantity A ′ varies with space therefore it is 
evaluated at reference point {x′ref , y′ref} which 
corresponds to a primed 1 unit distance traveled by 
the wave function into the A ′ field (where xʹ0 is the 
point where the magnetic field starts), therefore: 

 Substitute Bʹ0 from the last of Eqs.(10c) into Eq.
(9a), getting the Eq.(10d) potential used in later 

examples. The strength of the magnetic field is 
controlled by selecting the size of the αB parameter. 

2.3 Governing equations in presence of electric 
potential  Φʹ field alone  (Ā′ =0) 

Follow the same path presented in previous 
section 2.2 , where after setting A ′=0 in Eqs.(4a-
b), introducing the same scale parameters {T,L}
and substituting ψ4 from scaled Eq.(4a) (in terms 
of ψ1and it’s derivatives) into scaled Eq.(4b), the 
following Eqs.(11a-b) are obtained in terms of ψ1 

alone. After solving Eq.(11a) for ψ1 (and spatial 
derivatives), at arb. point {x′=X′, y′=Y′}, the scaled 
Eq.(4a) is used to post process ψ4 with Eq.(11c): 



Electric Φ′ potential selection: An Eq.(12a) 
scalar potential is selected, and after substituting it 
into the primed seventh of Eqs.(2), gives the 
corresponding Eq.(12b) electric field vector Ē′ : 

The size of Eʹ0 is selected large  enough to feel 
the influence of the electric field on ψ1(x,y,ω), yet 
small enough to allow the wave function solution 
to continue as a propagating wave. We do this by 
comparing the size of the k′D2 term to the Φʹ2 term 
in Eq.(11b), where α2E is defined as the ratio of 
these quantities via Eq.(13a): 

The quantity Φ′ varies with space, therefore is 
evaluated at reference point {x′ref, y′ref}, which by 
Eqs.(13a), corresponds to a primed 1 unit distance 
traveled by the wave function into the Φ′ field (where 
xʹ0 is the point where the electric field starts), thus:  

Substitute Eʹ0 from Eq.(13c) into Eq.(12a) to get 
the Eq.(13d) potential used in later electric 
examples. The strength of the electric field is 

controlled by selecting the size of the αE parameter. 

2.4 Selection of drive frequency ω and non-
dimensionalization  parameters {T,L}  

 Frequency selection: De Broglie’s photon-to-
particle extension of Planck’s relation between 
particle energy Ep and angular frequency ω (i.e. 
Ep= ℏω), along with the relativistic relation 
between Ep and velocity [1], Ep=mc2/√(1-β2), gives: 

for selecting the particle frequency in terms of the 
particle velocity vp via the speed parameter β=vp/c . 

Non-dimensionalization {T,L} selection: The 
scale of the solution domain is such that the 
numerical size of both time and space variables are 
extremely small in say standard CGS units. FEM 

models were solved directly in CGS units in [1]. 
Then during the post processing plots phase, time 
and length scales were normalized by the time 
period Tp=2π/ω and spatial wave length λD=2π/kD 
(kD  is wave number) respectively of the dominant 
propagating wave in the problem. Eqs. (7-11), in 
the non-dimensional prime variables, are valid for 
any unit consistent values of {T,L}, however a 
convenient choice is to use the time period Tp and 
wave length λD of a propagating Dirac Equation 
plane wave (in the absence of magnetic or electric 
fields). The size of all of the primed variables in 
the FEM models (both in model building, solving, 
and post processing) are then nice size numbers. 

The S.S. exact solution to unprimed Eqs.(4a-
b), for a plane wave (inclined θinc to the x axis, of 
frequency ω, and traveling in unit vector direction 

, with position vector =x +y  ), is given by 
[3] ): 

where A is an arbitrary constant. As an example, 
for a plane wave traveling in the +x direction, set 

 = +  , θinc=0, thus ρˆ=x; whereas for a wave in 
the -x direction, set  = - , θinc=π, thus ρˆ=-x. 

Therefore after selecting driver frequency ω, 
the following scale values for {T,L}are defined by: 

3. Method 

A finite bounded magnetic or electric field is 
embedded in a larger domain where the magnetic 
or electric field is zero. This is accomplished by 
applying COMSOL’s “rectangular functions” (with 
gradual cubic s shaped rise and tail-offs) to the A ′ 
and Φ′ terms that appear in Eqs.(7a-b) and Eqs.
(11a-b). These equations are solved in the 
frequency domain by driving the outside bounding 
domain  (i.e. where there is no   A ′ or  Φ′ present) 
on an upfield face of a model with a ψ1(x′s,y′s,ω′) 
harmonic loading and then determine the ensuing 
steady state waves that have propagated towards 
the downfield end of the model (which is 
terminated by absorbing boundary conditions). 

3.1 FEM Boundary Conditions 
Wave Generation Driven Surface: harmonic 

solutions are generated by driving the upfield 

⃗n ⃗r ⃗i ⃗j

⃗n ⃗i
⃗n ⃗i



surfaces with the Eq.(18) time harmonic loadings 
where ψ10(x′s,y′s,ω′) is the wave function 

distribution (typically set = 1.0) at surface points 
{x′s, y′s }. 

FEM Model Termination Surfaces: 
(i) absorbing B.C. : steady state solutions are 
typically terminated with some kind of wave 
absorbing boundary condition such as a plane 
wave absorber like Eq.(19), where the unit vector 

 n̄ is normal to the absorbing surface and kD′ is the 
Eq.(11b) free field wave number of the ψ1 wave to 
be absorbed. Equation(19) can be enforced in 
COMSOL with the Elemental Constraint Method 
Option, using the Flux/Source Boundary Condition 
with the source term g turned off. 
(ii)  hard B.C. : normal grad.  n̄•∇̄ψ1(x′s,y′s,,ω′)=0, 
at surface points {x′s,y′s }, where n̄ is a unit normal 
vector to the hard surface. This constraint can be 
enforced in COMSOL with the Elemental 
Constraint Method Option, using the Flux/Source 
Boundary Condition with both the source term g 
and flux term q turned off. 

Wave Generation Driven Surface With 
Absorbers Present: Eq.(20) is a combination of 
the previous Eq.(18) & Eq.(19) BC’s, where a  

downfield vertical flat surface (parallel to the y′ 
axis where unit normal component is  nx= -1.0)  is 
driven in the presence of absorbers. The purpose of 
these absorbers is to absorb any potential back 
scattering from the incident wave reflecting off 
any down field magnetic or electric field that is 
encountered [1]. 

3.2 Probability Computation 
The wave function {ψ1(x′,y′,ω′),ψ4(x′,y′,ω′)} 

can be used to compute the probability PΔA of a 
particle being in a finite area zone,  ΔA′, of space 
for 2-D models. Firstly, the ρ (x′,y′,ω′) probability 
density is defined as the probability per unit area 
of the particle being at a particular spatial point  
{x′,y′}, and is given [3] by  Eq.(21): 

The probability PΔA , can be computed with  Eq.
(22), where the  normalizing factor Λ is set so PΔA 
➞1 when  ΔA′, ➞ A′Total (model total area) In this 
paper only the computation of the probability 
density ρ  is addressed . 

3.3 Model Parameters 
All Dirac equation solutions herein use the 

following parameters in the pde’s: c= 2.998e10 
cm/sec,  ℏ = h/(2π) = 1.055e-27  erg-sec and the 
particle (electron) mass m = 9.109e-28 grams. 
Since these parameters are fixed from problem to 
problem, the Eq.(14) unprimed drive frequency ω 
is then governed by the remaining particle speed 
parameter  β=0.95 in all models.  

4. Results for Presence of  Magnetic  Potential    
Āʹ Field Alone  (Φʹ=0) 

The basic building blocks of the Dirac theory 
are freely propagating matter waves such as   
planar ones. Thus for validation cross comparison 
purposes, exact solutions to these wave 
propagation problems (when a spatial varying Āʹ 
potential is present) are rarely possible, except in 
one special example given here. In all the 
examples to follow, we are interested in the range 
of solutions where the solution is a propagating 
wave, therefore we restrict the solutions where in 
Eq.(7b), k′A2 > 0 is met. The vector potential 
represented by the Eqs.(9a-b) are used in all 
examples presented in this section 4.0 . 

   
4.1 Bar Plane Wave Guide in Āʹ Field 

FEM Model Solution : 
A W′xL′=4x40 FEM 2-D  bar (see Fig.(1) inset) is 
driven on the upfield end surface by a unit uniform 
loading in the presence of back facing absorbers 
via Eq.(20). The downfield surface also has a 
simple plane wave absorber and is applied with 
Eq.(19). Transverse surfaces of the wave guide use 
a n̄ •∇̄ψ1(x′s,y′s)=0 hard boundary condition. The 
upfield and downfield domain is outside the 
magnetic field, therefore the k′D free field Dirac 
wave number from the second of Eqs.(7b) is used 
in the boundary condition sizing. The 3.3 model 
parameters are used. The FEM model consist of 
five zones: (a) surrounding up field and down field 
free field zone where Bʹ0 =0 ; (b) central core zone 
where magnetic field Bʹ0 = constant; and (c) 
transition zones where Bʹ0 gradually increases or 
decrease between the (a↔b) zones. This is 
accomplished by  multiplying Bʹ0 in the second of 
Eq.(9a) with r(x ′)*Bʹ0 where r(x ′) is the 



appropriately shifted COMSOL built in 
rectangular (tophat shaped) function with cubic 
transition zones. The inset in Fig.(1) shows the 
resulting  r(x′)*Bʹ0  magnetic field, where dark 
navy blue is the free field zone, dark red is the 
constant central core and the rainbow colors in-
between show the transition zones. A xʹo =3 shift 
value is used, which defines the start of the 
magnetic field. The Eqs.(7a&c) are solved in 
COMSOL using the coefficient method. FEM 
solutions using Bʹ0 field strength values αΒ ={0.0 , 
-0.02, -0.03} are presented in Fig.(1), where the 

       Figure 1. ψ1 Passes Through Existing Āʹ Field 

effect of the magnetic field on the ψ1 solution is to 
create a gradually increasing wave length in the x′ 
direction of propagation through the magnetic 
field. The Re ψ1 & Im ψ1 plots are divided by 4 
simply for graphic compactness display purposes. 
The wave length (e.g. using Eq.(7b) midway 
between peaks @ x′=26.77) can be approximated 
with λʹΑ ≈ 2π/k′A = 1.43 as compared to the simple 
Fig.(1) graphical measurement 1.42 . The solution 
is behaving like the acoustics Helmholtz equation, 
but with a variable wave length in the direction of 
propagation. 

Exact Semi Infinite Solution : 
A W′xL′=∞ x ∞ infinitely wide by semi infinitely 
long model is employed to get a 1-D exact solution 
to the same problem above, except here there is no 
upfield and downfield bounding Bʹ0 =0 zones. The 
solution does not vary in the y′ direction so ∂()/ ∂ y′ 
terms drop out and the resulting ordinary ode is 
simply d2ψ1/dx′2 + (a-x′2)ψ1=0 which is solved 
symbolically with Mathematica™. There are two 
solutions with arbitrary constant coefficients. We 
use a boundary condition (that propagating wave 
solutions are sought), which requires setting the 

arbitrary constant multiplier on the non 
propagating solution to zero. The other arbitrary 
constant is set to get  ψ1(0)=1.0 . The solution is 
therefore ψ1(x′)=PCD[â,-ib̂x′]/PCD(â,0], where   
â=(-a-√b)/(2√b); b̂=√2∜b and PCD[_,_] is the  two 
argument “ParabolicCylinderD” function as 
defined in Mathematica™ (related to a form of 
Weber functions). Upon using the same 3.3 model 
parameters, the exact solution (shifted by the 
amount xʹo =3 since there is no leading upfield free 
field zone here) is shown superimposed on to the 
FEM solution and shows good agreement, for  ψ1 , 
ψ4 , and probability density ρ . This validates the 
procedure of: adding a bounding FEM upfield and 
down field free field zone, does not appreciably 
alter the wave function solution through the 
magnetic field. 

4.2 Two Slit Interference Example in Āʹ Field 
A 2-D semi circular disk, of radius R′o=40.0 , 

FEM model consist of 2 slits of aperture  Aʹp=0.5 
and separation Pʹ=5.0 that are embedded in a  
baffle as shown in the Fig.(2a) “slit detail” inset. 
The media consist of an existing Eq.(9a-b) 
magnetic Bʹ0, field bounded both upfield and 
downfield by a circular sectors of free field in 
vacuo media as shown in the Fig.(2c) inset. As in 
the previous example, the Bʹ0 value is turned on 
gradually by multiplying it times the COMSOL 
rectangular  function  using  a  radial  argument 
r(√[x′2 +y′2])*Bʹ0 . The resulting rBʹ0 distribution 

 Figure 2   Āʹ Field (αB = -0.02) Two Slit demo 



                                                                                 
is shown in the “Bʹ0 field“ Fig.(2c) inset. The 
slit is driven with unit 1.0 Psi distributions across 
each slit opening. A hard B.C. n̄•∇̄ψ1(x′s,y′s)=0 is 
applied on the rest of the bottom horizontal 
boundary, and the upper curved boundary is 
terminated with Eq.(19) absorbing B.C. (using 
primed Eq.(7b) for k′D).   

Figure 3.   Āʹ Field (αB = -0.02) Interference  Profile 

The interference |ψ1| solution for a wave passing 
through two slits with and without the magnetic 
field present is shown in Figs.(2a&2b), where the 
curved radial beam distortion due to the Bʹ0 ≠ 0 is 
evident. When one slit is closed, the simple non-
interference  patterns are illustrated in Figs.(2c-d). 
Corresponding interference bands are shown in the 
Figs.(3a&3b) line graphs at cut x′ =20 . The 
functional oddness in y′ of the ∂ψ1/∂y′  term in Eq.
(11a) is the origin of the non symmetric response about 
the x′ axis in Figs.(2a&2c) and in Figs. (3a&3c). 

5. Results for Presence of  Electric  Potential 
Φʹ   Field Alone  (Āʹ =0) 

Again  the basic building blocks of the Dirac 
theory are freely propagating matter waves such as   
planar ones. Exact validation solutions to these 
wave propagation problems (when the spatial 
varying  Φʹ potential is present) are not generally 
possible, even for simple 1-D propagation. Instead 
COMSOL comparisons to the same problem 
solved by an alternate FEM code (Mathematica™) 
is made. In all the examples to follow, we are 
interested in the range of solutions where the 

solution is a propagating wave, thus we restrict the 
x′ domain in Eq.(11b) so, k′φ2 > 0 is met. The Eqs.
(11a-b) (with potential Eqs.(12a-b) ) are solved in 
this section 5.0 . The solution strategy is the same 
as examples in 4.0, thus the model setup and 
results explanations are kept to a minimum. 

5.1 Bar Plane Wave Guide in Φʹ Field 
The same 4.1 problem is solved except Eqs.(11 

a-c) are solved using electric potential Eqs.(13d). 
The solution using an αΕ = -0.02 field strength factor 
is shown in Fig.(4), where an increasing wavelength 
vs x′ is observed. The wave length (e.g. using Eq.
(11b) midway between peaks @ x′=26.27) is 
approximated with λʹφ ≈ 2π/k′φ = 2.05 as compared 
to the Fig.(4) graphical measurement of 2.04 .  

Figure 4. a) PW ψ1 Passes Thru (αΕ = -0.02) Φʹ Field; 

b) — Comsol Re ψ1 ;  c) — FEM Mathmatica Re ψ1 

The solution (with αΕ = +0.02) is shown in Fig.
(5), where here the spatial wave length  decreases 
with increasing x′. An approximate wave length at    
x′=27.39 is  λʹφ ≈ 2π/k′φ = 0.664 as compared to 
the 0.660 Fig.(5c)  graphical measurement. 

Figure 5. a) PW ψ1 Passes Thru (αΕ = +0.02) Φʹ Field; 

b) — Comsol Re ψ1 ;  c) — FEM Mathmatica Re ψ1 



5.2 Finite Length x Width Φʹ Field 
A Fig.(6b) L′=15 x W′=4  finite model (similar 

to the infinite width Fig.(4) example) is solved. 
The upper curved field boundary is driven with the 
incident field (with absorbers present using a 
generalized curved surface version of Eq.(20) ). 
The two way finite field is constructed by 
multiplying Eʹ0 in Eq.(12a) by the rx(x′)*ry(y′) 
rectangular functions product in the x′ and y′ 
directions. Note that unlike Fig.(4b), here  due to 
diffraction, the Fig.(6c) downfield wave starts 
gradually increasing back towards the incident 1.0 
value after passing thru the Ē′x field. 

Figure 6. ψ1 Passes Thru (αΕ = -0.02) Finite Φʹ Field  

5.3 Two Slit Interference Example in Φʹ Field 

Figure 7.  Φʹ Field (αE = -0.02) Two Slit demo  

The Fig.(7a-b) electric field example is like the 
magnetic 4.2 case except here the electric Ē′x field 
varies opposite to the direction of the incident 
wave, which gives rise to the non-symmetric “fan 
blade” interference patterns about the y′  axis due 
to the functionally odd ∂ψ1/∂y′ term in Eq.(11a). 
Interference bands are shown in Figs.(8a-b) line 
graphs at cut y′ =15 both with and without the 
electric field present. Again the interference bands 
disappear when one slit is closed as in Figs.(8c-d). 

  Figure 8.   Φʹ Field (αB =-0.02) Interference  Profile 

6. Conclusions 

There is good agreement between COMSOL 
vs alternate reference solutions for the PW 
waveguide validation examples, where both the 
presence of existing magnetic or electric fields, 
produced spatially varying traveling waves. 
Solution to the incident harmonic wave function 
upon a two slit barrier entering an electric or 
magnetic field, produced curved (rather than 
straight) diffraction band patterns, showing null 
zone bands due to wave destructive interference. 
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