Numerical simulation of coupled fluid-solid interaction in digital rock samples

Vishal Das, Tapan Mukerji and Gary Mavko

Understanding porous media important in many fields and applications

- Biosciences
- Material sciences
 - Batteries, fuel cells, filters
- Geosciences
- Food industry

Understanding porous media in geosciences

Seismic field data acquisition

Understanding porous media in geosciences

Seismic field data acquisition

Digital Rock Physics (DRP)

Computational Multiphysics to handle:

complex microstructure

rigorous physics

Current challenges in DRP

Imaging

Processing

Simulating physics

Benchmarking

Motivation

Simulate multiphysics related to dynamic coupled fluid-solid interaction effects at the pore scale

Numerical setup: Geometry

- 2D connected cracks
 3D Berea μCT scan

Numerical setup: Boundary conditions

- Fixed constraint
- Roller constraint
- Sinusoidal displacement
- Solid displacement = fluid velocity at the interface (Coupling using Arbitrary Lagrangian-Eulerian (ALE) method)

Material properties

Bulk modulus (K)	36.6 GPa
Shear modulus (µ)	45.5 GPa
Density (ρ)	2650 kg/m^3

Pore Fluid	
Viscosity (η)	0.486 Pa-sec
Reference Density	860 kg/m^3
(ρ_0) @ pressure	
$(P_0) = 1 \text{ atm}$	
Bulk modulus (K _f)	1.02 GPa

Numerical setup: Mesh

Total mesh elements ≈ 8000 Total mesh elements ≈ 327000

Numerical setup: Physics

- Conservation of mass and momentum
- Hooke's law for solid

$$\sigma_{ij} = \lambda \delta_{ij} \epsilon_{\alpha\alpha} + 2\mu \epsilon_{ij}$$

Navier-Stokes' equation for compressible fluid

$$-\nabla p + \nabla \cdot \left(\eta (\nabla u + (\nabla u)^T) - \frac{2}{3} \eta (\nabla \cdot u) I \right) + F = \rho \frac{\partial u}{\partial t} + \rho u \cdot \nabla u$$

- Variables solved for in solid displacement
- Variables solved for in fluid pressure and velocity

Results: 2D connected cracks (Relaxed)

Frequency = 1 Hz (Relaxed state)

Results: 2D connected cracks (Relaxed)

Frequency = 1 Hz (Relaxed state)

Results: 2D connected cracks (Unrelaxed)

Frequency = 100 KHz (Unrelaxed state)

Results: 2D connected cracks (Unrelaxed)

Frequency = 100 KHz (Unrelaxed state)

Results: 2D connected cracks (Scattering)

Frequency = 100 MHz (Scattering)

Results: 2D connected cracks (Scattering)

Frequency = 100 MHz (Scattering)

Results: 2D connected cracks

 Compressional modulus (M) and inverse Quality factor (1/Q)

Results: 3D Berea (Unrelaxed frequency)

Frequency = 10 MHz (Unrelaxed state)

Results: 3D Berea (Unrelaxed frequency)

Frequency = 10 MHz(Unrelaxed state)

Conclusion

 Fluid related dispersion modeled on digital rock samples using COMSOL's FSI module

Acknowledgements

- Sponsors of Stanford Rock Physics and Borehole Geophysics (SRB) project and Stanford Center for Earth Resources Forecasting (SCERF)
- Dean of Stanford School of Earth, Energy and Environmental Sciences – Prof Steve Graham
- McGee-Leverson Research Grant Stanford University

Thank You