CO₂ storage and injection modelling

COMSOL Conference Milan, October 14-16, 2009

<u>Tore Ingvald Bjørnarå</u>, Eyvind Aker, Elin Skurtveit, (NGI)

Agenda

- Background and motivation
- Summary on CO₂ storage/trapping mechanisms
- Model review: equations and physics
- Examples:
 - 1. Solubility trapping
 - 2. Residual trapping
 - 3. Poroelasticity
 - 4. Acidity (pH)

Background and motivation

Two main areas of interest (applications):

- 1. CO₂ Storage: focus on short term storage and the injection process
- 2. Shallow gas seepage: gas flow into and out of a well

CO₂ storage/trapping mechanisms

- Storage idea: Inject CO₂ into a suitable porous formation below an intact cap rock so that it will not leak
- Types of storage mechanisms of CO₂:
 - 1. Structural trapping: Migration blocked by impermeable cap rock layer(s)
 - 2. Residual trapping: CO₂ stabilized by capillary pressure
 - 3. Solubility trapping: In time CO₂ will dissolve in salt pore water (and descend)
 - 4. Mineral trapping: In time CO₂ will chemically react with rock to form carbonates and precipitate

⁽From: IPPC Special report, 2005)

Modelling challenges

 How does the CO₂ migrate in/out of the formation, considering perforated/poorly plugged wells, faults, fractures, etc.

- Two-phase flow (maybe even more phases)

- How does CO₂ injection affect the rock
 Poroelasticity (fracturing)
- 3. Chemical reactions and borehole integrity

- Solubility of CO₂ in water (Other effects are: chemical reaction with rock formation (eg. calcite), corrosion, erosion, degradation of bore hole due to bad cement plugging)

Model review

Equations and physics

Two-phase flow equations

Do some equation manipulation: Eg. fractional flow formulation

(The fractional flow approach treats the multiphase flow problem as a total fluid flow of a single mixed fluid, and then describes the individual phases as fractions of the total flow)

Equations coming up!

Two-phase flow equations

Biot linear poroelasticity equation

Two-ways coupling:

• Flow coupled to geomechanics:

$$\nabla \cdot [\boldsymbol{\sigma}] = -\mathbf{F} \qquad \boldsymbol{\sigma} = \mathbf{D}_{el} \boldsymbol{\varepsilon} + \boldsymbol{\sigma}_0 - \boldsymbol{\alpha}_{biot} \, p \mathbf{I}$$

• Geomechanics coupled to flow:

$$\phi^* = (1 - \varepsilon_v)\phi \qquad q_w = q_n = -\alpha_{biot} \frac{\partial \varepsilon_v}{\partial t} \qquad K = K_0 \left(\frac{\phi^*}{\phi}\right)^{20}$$

20

Mass balance equation, $CO_2(aq)$

$$\frac{\partial \left(\phi S_{w}C_{CO_{2}}\right)}{\partial t} + \nabla \cdot \left(-D_{CO_{2}}\phi S_{w}\nabla C_{CO_{2}}\right) = F$$

$$\frac{\partial C_{CO_2}}{\partial t} + \nabla \cdot \left(-D_{CO_2} \phi S_w \nabla C_{CO_2} \right) = F - \phi C_{CO_2} \frac{\partial S_w}{\partial t} - S_w C_{CO_2} \frac{\partial \phi}{\partial t}$$

$$F = k_{s} \left(min \left(C_{sat, CO_{2}} S_{w}, C_{0, CO_{2}} S_{n} \right) - C_{CO_{2}} \right)$$

– concentration of dissolved CO_2 in the wetting phase [mol/m³] – saturation concentration of CO_2 in water; $CO_2(aq)$ [mol/m³] – concentration of pure CO_2 [mol/m³]

CO₂ solubility and densities

Symbol	Value	Unit	Description
$ ho_{ m H2O}$	1000	[kg/m ³]	Density of water-phase
$ ho_{\rm CO2}$	700	[kg/m ³]	Density of CO ₂ -phase
C _{sat,CO2}	1300	[mol/m ³]	Saturation concentration of CO ₂ (aq)

Model definition

Model (200 x 300 m²), axial symmetry

Examples

1: Solubility trapping

Sen. Time: 0.000 years

1: Solubility trapping

2: Residual trapping ($S_r = 0.05$)

2: Residual trapping ($S_r = 0.05$)

Example 3: Poroelasticity

3: Poroelasticity

pH measurements are good detection methods However, calcite buffers pH (maybe as much as 2)

4: Acidity (pH)

Conclusion

Acknowledgements: Financial support from the Research Council of Norway and NGI is gratefully acknowledged

- A robust model that considers many main features related to CO₂ injection has been developed
 - Improvements: More chemical reactions, more realistic geomechanical materials
- Most important short term storage mechanisms:
 - Residual and solubility trapping
- Remaining tasks:
 - Verification (compare with lab-experiment)
 - Simulation of "real-life" cases and risk assessment evaluation
- Thank you for your attention!