

Consiglio Nazionale delle Ricerche Istituto per i Materiali Compositi e Biomedici

Numerical and Experimental Study of a Concentrated Indentation Force on Polymer Matrix Composites

<u>V.Antonucci</u>, M.Esposito, R.Marzella, and M.Giordano Institute for Composite and Biomedical Materials , CNR IMAST, Technological District on Polymeric and Composite Materials Engineering

Outline

- Test case description
- FE model with Comsol Multiphysics 3.4
- Numerical results
- Experimental implementation
- Model experimental comparison

Test case

Aim: Structural behavior simulation of composite laminates

ASTM D 6264, "Standard Test Method for Measuring Damage Resistance of Fiber-Reinforced Polymer-Matrix Composite to Concentrated Quasi-Static Indentation Force"

Configurations and Materials

- Composite based on polyester resin Arotran Q6530 (Ashland) and unidirectional glass fiber reinforcement (Chomarat-600 g/m²)
- Lamina properties: literature model and experimental characterization
- Laminate
 - 8 ply, symmetric and balanced
 - 6 ply: 90°-90°-0°-0°-90°-90°

FE model

- -Three domains: composite panel, indenter and plate
- Solid elements

The software Comsol Multiphysics is not provided of "**layered**" elements for the composites discretization

Each lamina has been modeled in order to assign different properties

The lamina properties have been defined by two reference systems: one for the even layers and one for the odd layers.

FE model- Lamina properties

The fiber volume fraction has been measured experimentally by manufacturing a composite panel by Resin Transfer Molding technology.

Glass Fiber weight = 65 g, Panel weight= 101,15 g Vf= 43.05% Glass fiber density= 2,57 g/cm³, Polyester resin density = 1,08 g/cm³

Constituent material properties

Resin E= 2,8 GPa, v= 0.42 Glass fibers E=65 GPa, v=0.25

Orthotropic lamina assumption:

5 independent constant lamina

Mixture rules for E_1 and v_{12}

$$\begin{split} E_{1} &\cong E_{f}V_{f} + E_{f}V_{f} \\ \hline \nu_{12} &\cong \nu_{12f}V_{f} + \nu_{12m}V_{f} \\ \hline \text{Halpin Tsai equation for } E_{2} \text{ and } G_{12} \\ \hline \frac{M}{M_{m}} &= \frac{1 + \xi \eta V_{f}}{1 - \eta V_{f}} \\ \hline \eta &= \frac{(M_{f}/M_{m}) - 1}{(M_{f}/M_{m}) + \xi} \end{split}$$

Saravanos and Chamis model for v_{23}

$$\nu_{23} = \frac{\nu_{\rm m}}{(1 - V_{\rm f}\nu_{\rm m})} + V_{\rm f} \bigg\{ \nu_{\rm f23} - \frac{(1 - V_{\rm f})\nu_{\rm m}}{(1 - V_{\rm f}\nu_{\rm m})} \bigg\}$$

E1 = 29,57 GPa E2 = E3 = 7,93 GPa G12 = G13 = 2,29 GPa G23 = 5,92 GPa $v_{12} = v_{13} = 0,347$ $v_{21} = v_{31} = 0,093$ $v_{23} = v_{32} = 0,495$

Numerical results Identification of the optimal element and mesh

Displacement map

FE model- Lamina properties

Experimental characterization

The tests have been performed according with the ASTM standards (D3039 and D3518) in order to evaluate the 0° and 90° elastic moduli, the shear modulus and the Poisson coefficients $v_{12} e v_{21}$.

		Mechanical property	Value
		Elastic modulus E ₁	37.09 (GPa)
	4 55	Elastic modulus E ₂	7.35 (GPa)
		Poisson coefficient v_{12}	0.185
		Poisson coefficient v_{21}	0.034
		Shear modulus G ₁₂	3.14 (GPa)
		Tensile strength	660.29(MPa)
		Tensile strength	73.19(MPa)
		Maximum Shear Stress	44.07(MPa)

Numerical results

Entire and $\frac{1}{4}$ Structure

• N.L.G. option

Evaluation of deformations:
along the fiber direction between the 1°
and 2nd ply and between the 5th and
6th ply at the center of the laminate
quarter

Structure	N.L.G.	Vertex displacement,	Deformation (*10 ⁻⁶)	
		mm	1°/2 °	5°/6 °
Entire	Off	1.532	506	- 510
	On	1.476	428	- 525
1/4	Off	1.532	569	- 573
	On	n.d.	n.d.	n.d.

Numerical results

Experimental

Manufacturing of the composite laminate by Vacuum Infusion Process

The Fiber Bragg sensor have been placed trough the ply during the fiber stacking

Experimental

FBG position First panel: C1 (33 mm, 40 mm) T1 (29 mm, 41 mm)

Second panel C2 (28 mm, 32 mm) T2 (33 mm, 28 mm)

"C" locations: between 1st and 2nd ply "T" locations: between 5th and 6th ply

Experimental test

Numerical-experimental comparison

Numerical

Structure	N.L.G.	Strain (*10 ⁻⁶) Points T1-C1		Strain (*10 ⁻⁶)	
				Points T2-C2	
		1°/2 °	5°/6 °	1°/2 °	5°/6 °
Entire	Off	476	- 473	855	- 847
	On	475	- 464	819	- 804
1/4	Off	476	- 545	855	- 777
	On	n.d.	n.d.	n.d.	n.d.

Maximum percentage difference: 28%

Composite/position	Experimental	Numerical
compositer position	με	με
1/ply 1-2	396	475
2/ply 1-2	1190	855
1/ply 5-6	-381	-464
2/ply 5-6	-1080	-847

Conclusion

Numerical and experimental study of the composite damage resistance

from the experimental evaluation of the material properties to the experimental implementation of the simulated test case

Similar magnitude order between the experimental and numerical results Thank you for your attention