Mathematical Modeling of Electrokinetic Micropumps

<u>J. Hrdlička</u>, P. Červenka, M. Přibyl and D. Šnita Department of Chemical Engineering, ICT Prague

3rd European COMSOL conference, Milano 2009

Outline

- Pumping in micro- and nanoscale
- Interfacial phenomena and Electroosmotic flow
- Mathematical model equations
- **I** Software implementation
 - Model geometry and boundary conditions
 - Spatial discretisation and model solution

Results discussion

- Model quantities profiles
- Velocity characteristics

Conclusions

Pumping in micro- and nanoscale

Pumping in micro- and nanoscale

Pumping in micro- and nanoscale

Interfacial phenomena and Electroosmotic flow

Normal component of the electric intensity vector

Ions are attracted or repeled by the Coulombic force

$$f_e^\perp = q E^\perp = -q \frac{\partial \varphi}{\partial y}$$

Ion concentrations change exponentialy toward the charged wall.

Coulombic force compete with diffusion

There is non-zero charge density in electric double-layer, shielding

Interfacial phenomena and Electroosmotic flow

(-)

 \oplus

Ξ

 (\pm)

 \oplus

Ð

 \square

Normal component of the electric intensity vector

Ions are attracted or repeled by the Coulombic force

$$f_e^{\perp} = q E^{\perp} = -q \frac{\partial \varphi}{\partial y}$$

Ion concentrations change exponentialy toward the charged wall.

Coulombic force compete with diffusion

There is non-zero charge density in electric double-layer, shielding

Tangential component of the electric intensity vector

Accumulated ions are dragged by Coulombic force along the surface

$$f_e^{||} = q E^{||} = -q \frac{\partial \varphi}{\partial x}$$

Momentum is transported into the electrolyte bulk via viscous forces

$$\mathbf{f}_{\eta} = -\nabla \cdot (-\eta \nabla \mathbf{v}) = \eta \nabla^2 \mathbf{v}$$

Mathematical model equations

 $\begin{array}{ll} \frac{1}{\tilde{\lambda}_D} \frac{\partial \tilde{c}}{\partial \tilde{t}} &=& -\tilde{\boldsymbol{\nabla}} \cdot \left[\tilde{\mathbf{v}} \tilde{c} - \tilde{\boldsymbol{\nabla}} \tilde{c} - \tilde{q} \tilde{\boldsymbol{\nabla}} \tilde{\varphi} \right] \\ \frac{1}{\tilde{\lambda}_D} \frac{\partial \tilde{q}}{\partial \tilde{t}} &=& -\tilde{\boldsymbol{\nabla}} \cdot \left[\tilde{\mathbf{v}} \tilde{q} - \tilde{\boldsymbol{\nabla}} \tilde{q} - \tilde{q} \tilde{\boldsymbol{\nabla}} \tilde{\varphi} \right] - \frac{\tilde{q}}{\tilde{\lambda}_D^2} \end{array}$

 $0 = -\tilde{\boldsymbol{\nabla}} \cdot (\tilde{\boldsymbol{\nabla}} \tilde{\varphi}) - \frac{\bar{q}}{\tilde{\lambda}_D^2}$

Full model

Poisson equation

Local mass balances

Hydromechanical problem

Electrochemical problem

$$\frac{1}{\tilde{\lambda}_D} \frac{1}{\text{Sc}} \frac{\partial \tilde{\mathbf{v}}}{\partial \tilde{t}} = -\tilde{\mathbf{\nabla}} \tilde{p} - \tilde{\mathbf{\nabla}} \cdot \left(\frac{\tilde{\mathbf{v}}\tilde{\mathbf{v}}}{\text{Sc}} - \tilde{\mathbf{\nabla}}\tilde{\mathbf{v}}\right) - \frac{\text{Ra}}{\tilde{\lambda}_D^2} \tilde{q} \tilde{\mathbf{\nabla}} \tilde{\varphi} \qquad \text{Navier-Stokes equation}$$

$$0 = \tilde{\mathbf{\nabla}} \cdot \tilde{\mathbf{v}} \qquad \text{Continuity equation}$$

$$\begin{split} \tilde{\mathbf{x}} &= (\tilde{x}, \tilde{y}) = (x/L, y/L), \ \tilde{t} = \frac{t}{t_{\circ}} \\ \nabla_{\circ} &= \frac{1}{L}, \ \varphi_{\circ} = \frac{RT}{F}, \ q_{\circ} = 2c_{\circ}F, \ t_{\circ} = \frac{\lambda_D}{v_{\circ}}, \ v_{\circ} = \frac{D}{L}, \ p_{\circ} = \frac{v_{\circ}\eta_{\circ}}{L} \\ \tilde{\varphi} &= \frac{\varphi}{\varphi_{\circ}}, \ \tilde{c} = \frac{c^+ + c^-}{2c_{\circ}} - 1, \ \tilde{q} = \frac{c^+ - c^-}{2c_{\circ}}, \ \tilde{\mathbf{v}} = \frac{\mathbf{v}}{v_{\circ}}, \ \tilde{p} = \frac{p}{p_{\circ}} \end{split}$$

Mathematical model equations

Full model

Poisson equation

Local mass balances

Navier-Stokes equation

Continuity equation

Linearized model

Laplace and Stokes equation

RC boundary conditions

Helmholtz-Smoluchowski equation

$$0 = -\boldsymbol{\nabla} \cdot (\boldsymbol{\nabla}\tilde{\varphi}) - \frac{4}{\tilde{\lambda}_D^2}$$
$$\frac{1}{\tilde{\lambda}_D} \frac{\partial \tilde{c}}{\partial \tilde{t}} = -\tilde{\boldsymbol{\nabla}} \cdot \left[\tilde{\mathbf{v}}\tilde{c} - \tilde{\boldsymbol{\nabla}}\tilde{c} - \tilde{q}\tilde{\boldsymbol{\nabla}}\tilde{\varphi} \right]$$
$$\frac{1}{\tilde{\lambda}_D} \frac{\partial \tilde{q}}{\partial \tilde{t}} = -\tilde{\boldsymbol{\nabla}} \cdot \left[\tilde{\mathbf{v}}\tilde{q} - \tilde{\boldsymbol{\nabla}}\tilde{q} - \tilde{q}\tilde{\boldsymbol{\nabla}}\tilde{\varphi} \right] - \frac{\tilde{q}}{\tilde{\lambda}_D^2}$$

ã

Hydromechanical problem

$$\frac{1}{\tilde{\lambda}_D} \frac{1}{\mathrm{Sc}} \frac{\partial \tilde{\mathbf{v}}}{\partial \tilde{t}} = -\tilde{\mathbf{\nabla}} \tilde{p} - \tilde{\mathbf{\nabla}} \cdot \left(\frac{\tilde{\mathbf{v}}\tilde{\mathbf{v}}}{\mathrm{Sc}} - \tilde{\mathbf{\nabla}}\tilde{\mathbf{v}}\right) - \frac{\mathrm{Ra}}{\tilde{\lambda}_D^2} \tilde{q} \tilde{\mathbf{\nabla}} \tilde{\varphi}$$
$$0 = \tilde{\mathbf{\nabla}} \cdot \tilde{\mathbf{v}}$$

$$\begin{split} \tilde{\boldsymbol{\nabla}}^{2} \tilde{\psi} &= 0, \quad \tilde{\boldsymbol{\nabla}}^{2} \hat{\tilde{\mathbf{v}}} = \tilde{\boldsymbol{\nabla}} \hat{\tilde{\mathbf{p}}}, \quad \tilde{\boldsymbol{\nabla}} \cdot \hat{\tilde{\mathbf{v}}} = 0 \end{split} \qquad \qquad \mathsf{La} \\ \frac{\partial \tilde{\psi}}{\partial \tilde{y}} &= +i \left(\tilde{\psi} - \tilde{\psi}_{m} \right), \quad \frac{\partial \tilde{\psi}}{\partial \tilde{y}} = -i \left(\tilde{\psi} - \tilde{\psi}_{m} \right), \quad \frac{\partial \tilde{\psi}}{\partial \tilde{y}} = 0 \\ \frac{\hat{\tilde{u}}}{\mathrm{Ra}} &= \frac{1}{2} \Re \left[\left(\tilde{\psi} - \tilde{\psi}_{m} \right) \frac{\partial \tilde{\psi}^{*}}{\partial \tilde{x}} \right] \end{aligned} \qquad \qquad \qquad \mathsf{Helmho} \end{split}$$

Model geometry and boundary conditions

An assumption of the system-properties periodicity implies the periodicity in electrode array

Electrode overlap brings new quality to model behavior

The boundary conditions and initial approximation

• Four-phase arrays require more than one coustruction layer (x spiral design)

The more surface is covered by electrodes, the stronger is fluid flow

■ Flow reversal seems to be generic feature of zig-zag arrangement

Model geometry and boundary conditions

An assumption of the system-properties periodicity implies the periodicity in electrode array

Electrode overlap brings new quality to model behavior

The boundary conditions and initial approximation

Electrode surfaces $\varphi_{i} = A \sin \left(\omega t + i \frac{2\pi}{n} \right), \quad i = 0, 1, 2, 3$

Solid-electrolyte interface

$$\mathbf{n} \cdot \mathbf{J}^{\pm} = 0, \quad \mathbf{n} \cdot \nabla \varphi = 0, \quad \mathbf{v} = (0, 0)$$

Left and right margin (periodicity)

$$\begin{aligned} \xi(x,y,t) &= \xi(x+L,y,t) \\ \xi &= \{\varphi,c^{\pm},\mathbf{v},p\} \end{aligned}$$

Initial approximation

$$\varphi(0, x, y) = 0$$
, $c^+(0, x, y) = c^-(0, x, y) = c_0$

Spatial discretization and model solution

Hybrid discretization mesh

An advantage of skewed quadrilateral mesh

Supress element densification above the electrode corners

Spatial discretization and model solution

Hybrid discretization mesh

Used mathematical method and solver

- **Software:** Matlab 2007a & COMSOL Multiphysics 3.4a
- Method: FEM

FE type: Lagrange, 2nd order, triangular and (skewed) quadrilateral

- **FE count range:** 2500-16000, **Typical FE count**: 4000-5000
- **Solver:** femtime (pardiso, UMFpack)

Profiles of model quantities

The spatio-temporal profiles of the electric potential, the electric charge density and the pressure

• The largest gradients of the physical fields occur near to the electrode corners

The changes in physical quantities are restricted to the narrow zones close to the electrode surfaces

Net velocity characteristics

$$u_{\text{net}} = \frac{1}{T} \frac{1}{LH} \int_{t}^{t+T} \left(\iint_{\tilde{\mathcal{D}}} \tilde{u}(\tilde{\mathbf{x}}, \tilde{t}) \, \mathrm{d}\tilde{\mathbf{x}} \right) \, \mathrm{d}\tilde{t} \,, \quad \tilde{\mathcal{D}} = [0, 1) \times [0, \tilde{H}], \quad \tilde{t} \in [11, 12] T_{\circ}, \quad u_{\circ} = \frac{D}{L} \,, \quad t_{\circ} = \frac{\lambda_{D}L}{D}$$

There are discrepancies between data obtained by the linear and nonlinear models.

• With increased voltage, optimal frequencies drop to lower values.

• At higher frquencies, the direction of fluid flow changes, the flow reversal occurs.

Net velocity characteristics – geometric parameters

■ There is an optimal electrode width, 30-40 % *L*

The net velocity decrease rapidly with the increasing channel height

Net velocity characteristics – voltage

The net velocity is proportional to square of the voltage

At higher voltages, the velocity increase slows down

Net velocity characteristics – low frequencies

 $\tilde{A} = 1$, $c_{\circ} = 92.54 \text{ mol/m}^3$, $\tilde{\lambda}_D = 0.001 \rightarrow L = 1 \,\mu\text{m}, f_{\circ} = 2 \,\text{MHz}$

$$\lambda_D = \sqrt{\frac{\varepsilon RT}{2c_\circ F^2}} \quad \& \quad c_\circ = \frac{\varepsilon RT}{2\lambda_D^2 F^2}$$

Net velocity characteristics – low frequencies

Net velocity characteristics – forward regime

Net velocity characteristics – point of reversion

Net velocity characteristics – reversed regime

Net velocity characteristics – high frequencies

Conclusions

Zig-zag arrangement seems to have promissing features

- Employs an interdigital technique for easier electrode arrays construction
- The electrode overlap makes posibility to control the flow direction

The further miniaturization positively influences the net velocity

 $u_{\circ} = \frac{D}{L}$

Future directions

- Experimental realization (first steps)
- More accurate model of EDL is needed (condensed layer), nonlinear description
- Incorporation of the energy balance to our mathematical model

Thank you for your attention!

Frequently Asked / Anticipated Questions:

- Continuum hypothesis vs. small elements
- Experimental realization
- Discretization mesh validation
- Cap height estimation
- Periodic regime determination