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Dept. of Chemical Engineering, Institute of Chemical Technology Prague
∗Corresponding author: ICT Prague, Technická 5, 166 28 Praha 6, jiri.hrdlicka@vscht.cz

In this paper we present results of the
mathematical modeling of AC electroosmotic
micropumps. Unlike others we use the full
dynamic description, instead of the linearized
model. Skewed hybrid discretization meshes
are employed in order to accurately cap-
ture the main features of the studied system.
Also, we introduce zig-zag electrode arrange-
ments for traveling-wave electroosmotic mi-
cropumps. The detailed analysis of the system
behavior is presented by means of the exami-
nation of the model properties profiles.
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1 Introduction

Alternating current electroosmotic microp-
umps are meant for the use in a variety of
portable microfluidic systems such as lab-on-
chip devices. Electroosmotic pumps usually
operate with water electrolytes. The normal
component of an electric field imposed on an
array of electrodes attracts oppositely charged
particles (counter-ions) from the electrolyte
and the electric double layer (EDL) is formed.
The polarization means the formation of elec-
tric double layers. The component of the elec-
tric field parallel to the surface acts on the
electric charge stored in the double-layers and,
coupled with viscous forces, induces the net
fluid flow. This kind of fluid motion is referred
as the electroosmotic flow.

AC electroosmotic pumps typically consist
of an electrode array with a periodical mo-
tif placed on the bottom wall of a microflu-
idic channel. First experiments proved that
the system of two electrodes of the same size
powered by AC signals shifted by 180 ◦ pro-
duces flow patterns consisting of four counter-
rotating vortices but no net flow [1, 2, 3]. In
order to achieve a nonzero net flow velocity,

the system symmetry has to be broken [4].
The subsequent force imbalance leads to the
desired pumping effect. There are two ba-
sic kinds of AC electroosmotic pumps, the
asymmetric [5, 6, 7] and the traveling wave
[8, 9, 10], both incorporating the principle of
broken symmetry.

We focus on the traveling wave pumps
which are usually driven by a three of four
phase electrical AC signal. The electric sig-
nal imposed on adjacent electrodes in the four
electrode arrangement is shifted by 90 ◦ and
thus a traveling wave is generated. Such elec-
trode arrays can be represented by four elec-
trodes of equal size separated by narrow gaps.
A typical four-phase electroosmotic microp-
ump cannot be constructed in one layer. (with
the exception of spiral design [11]). The neces-
sity to separate four electrode arrays into more
electrode layers results in much more difficult
fabrication.

We introduce the zig-zag arrangement for
traveling wave pumps. The zig-zag arrange-
ment can be derived from the standard vari-
ant by moving all the even electrodes from the
bottom on to the top channel wall. The first
electrode is virtually split in half (Fig. 1).
We note that the zig-zag design of electrode
arrays allows using the interdigital technique
[12]. Interdigitated electrodes can be fabri-
cated easily. In addition, electrodes can be ex-
tended, which has a positive influence on the
flow rate. The electrode extension introduces
an electrode overlap that means a part of top
(bottom) electrode is above (under) the elec-
trode in the bottom (top) array.

The zig-zag array shows a flow reversal at
high frequencies in systems with overlapping
electrodes. The reversal transport means the
electrolyte flows in the opposite direction than
the driving traveling wave.
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Figure 1: One periodic segment of the zig-zag
traveling wave pump. Light gray and dark gray

represent the substrate layers (glass or plexiglass)
and the electrodes (gold), respectively. Black

lines correspond to solid-electrolyte interfaces.

2 Mathematical Description

2.1 Prerequisites

Due to the periodical character of the system
geometry and the driving signal, we assume
periodical character of the solution. The mod-
eling domain has been restricted to one peri-
odical segment Ω ⊂ R2 of the length L and
height H in the cartesian coordinate system
x = (x, y).

We use the dimensionless coordinate sys-
tem scaled by the spatial period L: x̃ =
(x̃, ỹ) = (x/L, y/L).

The system state is described by spatio-
temporal fields, the electric potential ϕ, the
electrolyte/salt concentration c, the electric
charge density q, the velocity vector v = (u, v)
and the pressure p.

The characteristic values are set to

λ2
D = εRT/(2c0F 2), t0 = λDL/D,
φ0 = RT/F, q0 = Fc0,
v0 = D/L, p0 = 2c0RT.

(1)

The parameter λD denotes the electric
double layer thickness and t0 = τc represents
the characteristic electrode charging time (the
double layer relaxation time).

The dimensionless properties are defined as
follows:

ϕ̃ = ϕ/φ0, c̃ = (c+ + c−)/(2c0)− 1,(2)
q̃ = F (c+ − c−)/(2c0), (3)
ṽ = (u/v0, v/v0), p̃ = p/p0. (4)

Material properties of an symmetric uni-
univalent electrolyte are described by the
Rayleigh and Schmidt numbers:

Ra =
ε

ηD

(
RT

F

)2

, Sc =
η

ρD
(5)

2.2 Governing equations

The system behavior is governed by the Gauss
law of electrostatics in the form of the Poisson
equation (6), the local balances of the ionic
species (7) and the electric charge (8), the
Navier-Stokes (9) and the continuity equation
(10):

0 = −∇̃2ϕ̃− q̃/λ2
D (6)

1
λ̃D

∂c̃

∂t̃
= −∇̃ · J̃ (7)

J̃ = ṽc̃− ∇̃c− q̃∇̃ϕ̃
1
λ̃D

∂q̃

∂t̃
= −∇̃ · Ĩ− q̃

λ̃2
D

(8)

Ĩ = ṽq̃ − ∇̃q − c̃∇̃ϕ̃
1

λ̃DSc
∂ṽ
∂t̃

= −∇̃p̃− ∇̃ · T− Ra
λ̃2

D

q̃∇̃ϕ̃ (9)

T =
[
ṽṽ
Sc
− ∇̃ṽ

]
0 = −∇̃ · ṽ (10)

J̃ and Ĩ stand for the ionic species flux den-
sity and the electric current density, respec-
tively.

2.3 Initial and boundary conditions

For shortness, we introduce a symbolism
for system boundaries. The entire solid-
electrolyte interface is represented by a set
B̃ = B̃e

⋃
B̃d = B̃b

⋃
B̃t. Here, B̃d repre-

sents all dielectric-electrolyte interfaces and
B̃e =

∑4
m=0 B̃e,m represents the sum of the

m-th electrode-electrolyte interfaces, where m
is the electrode sequential number. Subscripts
b and t refer to the top and the bottom channel
wall, respectively.

Now we can describe conditions at the
phase interfaces as follows:

ϕ̃ = ϕ̃m, x̃ ∈ B̃m, (11)

n · ∇̃ϕ̃ = 0, x̃ ∈ B̃d, (12)

ṽ = 0, n · J̃± = 0, x̃ ∈ B̃. (13)

The left and the right boundary of the
modeling domain are periodically coupled:

ξ̃(x̃ = 0, ỹ, t̃) = ξ̃(x̃ = 1, ỹ, t̃),
ξ̃ = {ϕ̃, c̃±, ṽ, p̃}. (14)

In order to get the hydrodynamically con-
sistent set of boundary conditions we have to



fix a reference value of the pressure in one ar-
bitrary point:

p̃ = 0, x̃ = (0, 0). (15)

3 Methods

The numerical analysis of the model has been
performed in Matlab 2007/COMSOL Multi-
physics 3.4 package. Scripts combining func-
tions of both Matlab and COMSOL are used
for handling our specific requirements.

First, the periodic character of the mod-
eled system makes possibility to extract the
minimal common part–the periodic segment.
The behavior of the entire system may be rep-
resented by this unit.

Second, the periodical segment is subdi-
vided into the electrolyte bulk domain and
narrow regions above the electrodes in order to
provide the opportunity for the detailed study
of the electric double layer dynamics.

Third, the most rapid and significant
changes of system properties take place in elec-
tric double layers regions, especially in imme-
diate proximity of electrode corners. A dis-
cretization mesh has to be sufficiently dense
in these critical regions and cover the entire
periodical segment at the same time. The size
ratio of the periodic element and the double
layer thickness is quantified by the parameter
λ̃D = λD/L. In order to capture the dou-
ble layer dynamics, the size of the mesh el-
ements has to be even smaller in the double
layer regions. Ultimately, the ratio of sizes of
the largest triangular and the smallest quadri-
lateral element might exceed value of 103.

Figure 2: The skewed hybrid discretization mesh
detail.

Hybrid discretization meshes consisting of
the triangular part in the electrolyte bulk re-
gion and rectangular parts for the double layer
regions has been employed in our previous sim-
ulations.

With regard to the driving mechanism of
the electroosmotic flow, skewed quadrilaterals
have been used in the double layer caps. The
electric field generated by the electrodes has
rather a radial character at the critical zones.
Rectangular discretization meshes can resem-
ble to this trend by an element densification
towards the electrode corners. This densifi-
cation has a negative impact to the element
count and causes unwanted element crowding
in the electrolyte bulk region. The skewed
quadrilaterals (Fig. 2) can introduce a bet-
ter numerical approximation without the ele-
ment crowding effect. By default, COMSOL
distributes mesh elements isotropically. In ad-
dition, the element growth specification by a
vector is allowed. In the double layer regions,
the elements grow exponentially in the direc-
tion perpendicular to the electrode surface.
The similar exponential elements size growth
is introduced at the electrode edges and be-
tween the corners, while on the opposite cap
edge (further in the electrolyte) the equidis-
tant character is preserved.

4 Discussion

Zig-zag arrangements display flow reversals.
For sufficiently wide electrodes (L̃e > 1/4),
the flow direction is reversed at high frequen-
cies (Fig. 3). For electrodes narrower than
L/4, the flow reversal does not occur at all.
The zig-zag traveling wave pump can be de-
composed into the system of two-electrode ar-
rays, in which the upper array is shifted in
x-direction by L/4. As mentioned above, the
two-electrode symmetric system produces no
net flow. The force imbalance is introduced
by shift of the upper array. Moreover, the ar-
rays can interact over the channel. The inten-
sity of this interaction depends on the channel
height, the ac signal frequency, the electrolyte
concentration and the AC signal amplitude.
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Figure 3: The dependence of the dimensionless net velocity on the dimensionless frequency. H = 0.2L,
Le = 0.45L, and λ̃D = 0.001.

The predicted flow reversal might be a con-
sequence of the electrode array interaction at
high frequencies.

The double layer thickness is in this case
one thousand times smaller than the system
length, λ̃D=0.001, hence, the most significant
changes of the system properties take place in
very narrow regions.

4.1 Forward flow regime

At very low frequencies (Fig. 3, marker A),
the zig-zag pump behaves like a pair of sym-
metric two-electrode arrays, since the interac-
tions between arrays are strongly suppressed
by the electrode polarization.

Figure 4: The velocity vector field at low
frequencies, f̃ = 0.01.

Vortices, usually incidental with the elec-
troosmotic flow, are not apparent at these con-
ditions (Fig. 4).

Figure 5: The electric charge density field at low
frequency f̃ = 0.01. Gray transparent boxes

represent electrodes.

Generally speaking, the highest magni-
tude of the electric charge density is local-
ized at the electrode corners. Beyond the
narrow zone of the electric double layers,
the field strength has a constant value equal
to zero (the electrolyte bulk is shielded by
the double layers from the external electric
field). Changes in the electrode potential are
sufficiently slow to allow the complete elec-
trode shielding/polarization at low frequen-
cies. Such a situation is depicted in Fig. 5
There is enough time for the transport of op-
positely charged ions (counter-ions) from the
electrolyte bulk into the double layers.



Figure 6: The electric potential field at low
frequency f̃ = 0.01. There is apparent the

external electric field shielding.

The electric field generated by the charge
stored in the double layers shields the elec-
trolyte bulk from the external field (Fig. 6).

Figure 7: The velocity vector field in forward
regime at optimal frequency, f̃ = 0.326.

The net velocity of AC electroosmotic
pumps typically reaches its maximum at the
optimal frequency f0 = D/(λDL), which is the
reciprocal value of the electric double layer re-
laxation time τc = λDL/D. In the case of zig-
zag traveling wave pumps, the maximal net
velocity occurs also close to f̃0. The figure
7 shows the flow patterns at the optimal fre-
quency (cf. Fig 3, marker B).

The electric charge density q and the elec-
tric potential ϕ fields, respectively, are de-
picted in Fig. 8 and Fig. 9, respectively, for
entire modeling domain.

Figure 8: The electric charge density field at
optimal frequency f̃ = 0.326.

Typically, the electric charge density field
values change first at electrode edges, then fol-
lows the rest in between. The symmetry of the
profile is (sort of) broken, which is caused by
the interactions of the electrodes in the op-
posing electrode array. In figure 8, the broken
symmetry is apparent and the wave maximum
is shifted to the left corner.

Figure 9: The electric potential field at optimal
frequency f̃ = 0.326.

With growing frequency, the electrode
polarization weakens due to the incomplete
charging and the electrolyte bulk is also af-
fected by the driving field.



4.2 Regime at the point of reversion

Examinations of the velocity vector field dy-
namics reveals a gradual growth of the fluid
vortices with increasing frequency (Fig. 3
markers B–D). There is a noticeable tendency
of the vortices to interconnect adjacent elec-
trode corners across the channel.

Figure 10: The velocity vector field at the point
of reversion f̃ = 2.

As soon as the vortices reach the nearest
corners, the net flow velocity tends to change
its direction (Fig. 10).

4.3 Reversed flow regime

The flow reversal has been observed in many
experiments performed with typical AC elec-
troosmotic micropumps, which have electrode
arrays only at one channel wall. There is no
consistent underlaying theory explaining this
phenomenon yet. In the case of the zig-zag ge-
ometry, the flow reversal may be caused by the
competition between two opposing electrode
arrays.

Figure 11: The velocity vector field in the
reversed regime f̃ = 4.

Further increasing of the ac signal fre-
quency deforms the shape of the fluid vor-
tices (Fig. 11). Eventually, the vortices split-
up and disappear while the net velocity tends
from its minimum to zero.

Figure 12: The electric charge density field at
high frequency f̃ = 10.

In some cases, the electric charge density
changes its sign even along a single electrode
(see Fig. 12).

Figure 13: The electric charge density field at at
very high frequency f̃ = 100 above the central

bottom electrode.

The subdivision of the modeling domain
(cf. Fig. 13) allows a detailed inspection of
the model properties separately. In the re-
versed flow regime, the electric charge den-
sity field is deformed. Electric double lay-
ers have not enough time to fully charge and
only counter-ions in a close proximity of the
electrode corners can respond to rapid electric
field changes.

At high frequencies, there is not enough
time for complete double layer charging and



the electric field can expand over the channel
(Fig. 14).

Figure 14: The electric potential field at high
frequency f̃ = 4.

At frequencies more than 100 times higher
than the characteristic one, the deformations
of the charge density field weakens and even-
tually cease.

5 Conclusions

The innovative zig-zag arrangement for trav-
eling wave electroosmotic micropumps was in-
troduced. The zig-zag pumps are easier to
construct than classical traveling wave pumps
and display the flow reversal as a general fea-
ture caused by electrode overlaps.

The skewed hybrid mesh was used for the
modeling domain discretization. The hybrid
meshes are necessary for modeling systems
with thin boundary layers.

COMSOL Multiphysics together with
Matlab makes possible a detailed analysis of
the system properties profiles in order to un-
derstand the studied system behavior.
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