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Abstract: An electrical double layer (EDL) 
plays a major role in understanding the interface 
between a charged surface (e.g. an implant) and 
ionic liquids (e.g. body fluids). The three 
classical models of the EDL (Helmholtz, Gouy – 
Chapman and Stern Model) are numerically 
solved for a flat surface electrode in the 3D 
Electrostatics mode of Comsol Multiphysics® 
3.5a Software. The values of the electric 
potential drop near the electrode’s surface are 
compared and it is shown their area of validity. 
The double layer capacitance is computed 
analytically, numerically and measured by 
Electrochemical Impedance Spectroscopy (EIS) 
and it has been shown that the classical models 
do not agree with the experimental 
measurements. 
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1. Introduction 
 

The clinical success of an implant depends 
on the profound knowledge of the interaction 
between the biomaterial and the cells. The 
contact between the implant and the body fluids 
results into formation of an EDL. This double 
layer consists of a layer of electrons (if the non-
electrolytic phase is a metal or electronic 
conductor), a layer of adsorbed ions, and a 
diffuse double layer with an ionic atmosphere, 
where ions with a sign opposite to the electrode 
surface are found to be present in excess 
compared to the bulk. The EDL is formed 
simultaneously after the contact of the electrode 
with the electrolyte and results into a fall of the 
electric potential, assisting proteins adhesion and 
the resulting cell spreading. Therefore, EDL has 
a huge impact on the analysis and simulation of 
electrical interactions of implants with the bio-
system. 
 
 

2. Electrical Double Layer 
 

The present paper is concerned with the 
comparison of the classical models of the EDL, 
which consider the electrolyte as a continuum 
dielectric solvent and dilute ionic solution. The 
electrode is perfectly polarized and any chemical 
reactions on it are neglected. A circular plate 
condensator with electrode radius R=10 nm and 
potentials of ±50 mV, filled with Sodium 
Chloride (NaCl) electrolyte with concentration of 
0.1 and 0.01 M is regarded here. 

    
2.1 Helmholtz Model 
  
The first and simplest double layer model, 
created in 1879 by Helmholtz [4], considered the 
concept of the charge separation at the interface 
between a metallic electrode and an electrolyte 
solution.  

 
Figure 1. Helmholtz Model 
 
The electrode holds a charge density (σM) arising 
from either an excess (-σM) or deficiency (+σM) 
of electrons at the electrode surface. The charge 
on the electrode is balanced by redistribution of 
the ions in the solution by an equal but 
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oppositely charged amount of ions. The result is 
two layers of opposite charge separated by some 
distance l=d/2 limited to the radius d/2 of the 
attracted ions and a single layer of solvation 
around each ion (fig.1). 
The line drawn through the centre of such ions 
marks the boundary known as the ‘Outer 
Helmholtz Plane’ (OHP) and the region within it 
the electrical double layer. 
The potential in the Helmholtz layer is described 
by the Poisson’s equation in 1D, which relates 
the potential with the charge distribution 
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where φ is the electric potential, ρ is the charge 
density, x is the distance from the electrode, ε0 is 
the permittivity of vacuum, εr is the relative 
permittivity of the medium. 
The approach treats the ions as point charges and 
this allows us to rewrite Eq-n (1) between the 
two layers to 
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This behaviour is comparable to the classical 
problem of a parallel-plate capacitor i.e. EDL is 
capable of storing electric charge.  Therefore, the 
double layer capacitance per unit area is given 
as: 

l
C r

H
εε0= ,           (3) 

 
where l is the thickness of the double layer.  
For mF /10854.8 12

0
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ml 9103.0 −×= , we get 
 

2/41.231 cmFCH μ= .         (4) 
 
The model does not account for the dependence 
of the measured capacity on potential or 
electrolyte concentration. Another drawback is 
the neglect of interactions that occur away from 
the OHP. 
 
2.2 Gouy-Chapman Model 
 
Gouy and Chapman [2, 3] were the first to 
consider the thermal motion of ions near a 
charged surface. They pictured a diffuse double 

layer (DDL) consisting of counterions (i.e. ions 
of opposite charge to the surface), which are 
attracted to the surface and co-ions repelled by it 
embedded in a dielectric continuum described by 
the Poisson - Boltzmann (PB) differential 
equation. 
 

 
 Figure 2. Gouy-Chapman Model 
 
The distribution of ions is described by the 
Boltzmann distribution: 
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where 0
in is the concentration of ion i in the 

bulk, e is the unit charge, iz - charge on the ion 
i, k – Boltzmann constant, T – absolute 
temperature.  
The total charge density per unit volume for all 
ionic species is the sum over all ions: 
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Combining Eq. (1) and Eq. (6) leads to the 
Poisson-Boltzmann equation: 
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By using the property of derivatives, 
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PB equation can be solved as 
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For the following boundary conditions, 
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where φ0 is the potential at the electrode, the 
integration yields to 
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For a symmetrical (z:z) electrolyte, Eq. (11) has 
the form 
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The characteristic distance for the diffuse layer 
thickness is given as 
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The charge density of the diffuse layer is used as 
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By differentiating, the differential capacitance is 
obtained as 
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In order to assess the validity of the model, the 
following parameters φ0 = 50 mV, z=1,  
c∞ = 0.1 M are chosen and the differential 
capacitance is determined as 
 

2/16.77 cmFCGC μ= .             (16) 
 
The Gouy-Chapman Model is a continuum 
meanfield-like approach assuming point-like 
ions in thermodynamic equilibrium and 
neglecting statistical correlations. For low 
concentration electrolytes, this theory has been 
successful in predicting ionic profiles close to 
planar and weakly curved surfaces and the 
resulting forces. However, it is known to 
overestimate strongly ionic concentrations close 
to charged surfaces. In particular, this 
shortcoming of the PB theory is pronounced for 
highly charged surfaces and multivalent ions. 
 
2.3 Stern Model 
 
In 1924 Stern [6] simply developed the double-
layer theory by suggesting a more realistic way 
of describing the physical situation at the 
interface. He combined the two previous models 
by adapting the compact layer of ions used by 
Helmholtz and next to the diffuse layer of Gouy-
Chapman extending into the bulk solution. He 
took into account the fact that ions have finite 
size, and consequently the closest approach of 
OHP to the electrode will vary with the ionic 
radius.  

 
Figure 3. Stern Model 
 



In mathematical terms the differential 
capacitance of the double layer Cs is equivalent 
to two capacitors in series or 
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where CH is the capacitance of the charges held 
inside the OHP and CGC is the capacitance of the 
diffuse layer. 
By substituting the already received values, we 
obtain 
 

2/92.57 cmFCs μ= .      (18) 
 
3. Numerical Simulations with COMSOL 
Multiphysics  
 
3.1 Geometry and Subdomain Parameters 
 
The 3D Electrostatic mode of the AC/DC 
module is used to simulate the three classical 
models of the EDL as an ideal parallel-plate 
capacitor. In correspondence with the 
experimental setup, the capacitor has a 
cylindrical form with a diameter and length of  
20 nm. Additional plates in a distance of 0.3 nm 
corresponding to the radius of a hydrated ion are 
included.   

 
Figure 4. The model geometry  
 
In the 3D Electrostatics Mode, the following 
equation is solved 
 

( ) ρϕεε =∇⋅∇− r0          (19) 
 

and respectively for the above described models 
we implement the r.h.s. of Eq-ns (1), (12) and a 
combination of them in the Stern Model.  
 
3.2 Boundary Conditions 

 
Figure 5. Boundary conditions 
 
The boundary conditions for the Helmholtz 
Model was chosen so that the electric potential 
of the electrode φ0= φ1 and of the OHP at a 
distance of 0.3 nm to be set to continuity 
meaning that the normal component of the 
electric displacement is continuous across the 
interior boundary. Similarly, the Gouy-Chapman 
Model was implemented, but its inner plate was 
placed in a к-1 distance. Stern model is simply a 
combination of the latter ones. The outer 
boundaries are chosen in the way that the normal 
component of the electric displacement to be 
zero. 
 
3.3 Mesh Generation 
 

 
Figure 6. Mesh generation for the used geometry  
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For the models, a triangular mesh (Fig. 6) was 
used with a finer mesh between the electrode and 
the OHP and a coarser one between the two 
opposite electrodes. The number of degrees of 
freedom solved for all models is around 200 000 
and the solution time nearly 40 s.  
 
3.4 Postprocessing 
 
The capacitance for all models is calculated by 
finding the charge Q obtained by integrating over 
area A the electric displacement multiplied by 
the normal vector (normD_emes) 
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For the Helmholtz Model, the parameters are 
obtained as  
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and the differential capacitance CH is 
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This value coincides absolutely to the analytical 
result as obtained in Eq. (4). 
 

 
 
Figure 7. Electric potential distribution for Helmholtz 
Model with φ0 =50 mV and NaCl concentration of 0.1 
and 0.01 M. 
 
The electric potential in the Helmholtz Model 
(Fig.7) has a linear fall between the electrode’s 

surface and the OHP and the numerical 
simulation confirms this result. 
The electric potential drop in the Gouy-Chapman 
Model has an exponential form (Fig. 8), which 
was validated by varying the NaCl concentration 
between 0.1 and 0.01 M.  
 

 
 
Figure 8. Electric potential distribution for Gouy-
Chapman Model with φ0 =50 mV and NaCl 
concentration of 0.1 and 0.01 M. 
 
The parameters used here are 
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thus 
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As the analytical value takes into account the 
whole electrolyte, we need to add the effect of 
the rest charge further away from the Debye 
length к-1 as 
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Summing up Eq. (23) and Eq. (24) gives 
 

2/03.77 cmFCGC μ= .      (25)  
As we have seen that approximation is 
reasonable and provides a consistent result with 
the theory and Eq. (16). 



 
In Stern Model, the electric potential has a linear 
fall within the OHP and an exponential one in 
the diffuse layer (Fig. 9). 
  

 
 
Figure 9. Electric potential distribution for Stern 
Model with φ0 =50 mV and NaCl concentration of 0.1 
and 0.01 M. 
 
The parameters for the Stern Model are as 
follows: 
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yielding to  
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Finally, the differential capacitance in Stern 
Model is equal to 
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and taking into account the capacitance in the 
rest of the electrolyte by summing up Eq. (28) 
and (29), the Cs is obtained as 
 

2/6157.75 cmFCs μ=        (30) 
which is a good approximation of Eq. (18). 
 The comparison between the models (Fig.10) 
shows that for low concentration electrolytes like 
0.01 M NaCl, the Stern Model has similar 
behavoiur to Gouy-Chapman Model.  
  

 
 
Figure 10. Comparison of the Helmholtz, Gouy-
Chapman and Stern Model for NaCl concentration of 
0.01 M 
 
4. Experimental Measurements  
 

The electrochemical experiments [5] were 
performed by a three-electrode technique in a 
glass containing 80 cm3 of a phosphate-buffered 
saline PBS (pH 7.2) electrolyte solution. A Ti 
specimen served as working electrode and as 
reference system a saturated calomel electrode 
KE-10 (Sensortechnik Meinsberg, Germany). 
The counter electrode consisted of a platinium 
sheet placed in a 30-mm distance planar to the 
working electrode. All measurements were 
performed at room temperature (22+-1 0C).  

 

 
 
Figure 11. Experimental setup for EIS 



Electrochemical impedance spectroscopy 
(EIS) [1] was performed with the 
electrochemical measuring system IM6e 
(ZAHNER, Germany). We measured in the 
frequency range of 1mHz to 10 kHz in the single 
sine mode with an ac amplitude of 10 mV with 
respect to open-circuit potential (OCP). The EIS 
data were analysed using THALES software 
from ZAHNER. 

Voltammetric experiments were also 
performed with the Zahner system to get a quasi-
stationary current-potential curve. The potential 
scans were carried out from -0.5 V (SCE) to 0 V 
(SCE) in anodic direction with a scan rate   
0.5 mV/s. Values for OCP, corrosion current 
(icorr), corrosion resistance (R corr) and cathodic 
Tafel slope were obtained by classical Tafel 
analysis of the cathodic branch. 

A chronoamperometric experiment was used 
to determine the amount of charge required for 
reloading of the double layer capacity for a  
20 mV potential jump. The resulting current 
transients were recorded for 10 s with a 
resolution of 10 ms and integrated. 

The capacitance obtained for a polished Ti is 
around 2/6 cmFμ . 
 
5. Discussion 
 

The Helmholtz Model of the double layer 
seems to be appropriate for polarisable 
electrodes in sufficiently high concentrations of 
electrolyte (>1 M). At lower electrolyte 
concentrations (< 0.1 M), new features appear in 
the measurement of the double layer capacitance 
as a function of potential which cannot be 
explained by the Helmholtz Model. The Gouy-
Chapman Model is a continuum meanfield-like 
approach assuming point-like ions in 
thermodynamic equilibrium and overestimates 
strongly ionic concentrations close to the 
charged surface.    

 
Table 1: Differential capacitance values of the EDL  

 
 Helm- 

holtz 
Model 

Gouy-
Chapman 
Model 

Stern 
Model 

Experi-
ment 

Cdl 
[µF/cm2] 
analytical 

 
231.41 

 
77.16 

 
57.92 

 
6 

Cdl 

[µF/cm2] 
numerical 

 
231.69 

 
77.03 

 
57.61 

 
6 

Even though Stern made a key improvement of 
the model, the capacitance value received by 
measurement is much smaller than that obtained 
analytically and numerically (Table 1). 
 
6. Conclusion 
 
Generally, the classical models describe the 
fundamental behaviour of the ions near the 
electrode’s surface forming the double layer.  
However, they ignore key factors as ion-ion 
correlations, electrostatic image interactions, 
steric effects, overlapping of ions leading to 
inconsistency with the experimental results. 
Therefore, as the aim of our future work is the 
implementation of an EDL model on non-planar 
electrodes with well-predefined geometrical 
structures, we need another approach, which will 
incorporate all these factors. 
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