

## Design and Optimization of An All Optically Driven Phase Correction MEMS Device using FEA

<u>V. Mathur</u>, K.Anglin, V.S. Prasher, K.Tremkoa, S.R. Vangala, X. Qian, W.D. Goodhue Department of Physics and Applied Physics,University of Massachusetts,Lowell

B Haji-Saeed, Jed Khoury Air Force Research Laboratory/SNHC,Hanscom Air Force Base,MA-01731





## Outline

- Introduction and working principle
- Micro mirror (Structural Mechanics, Electrostatics module)
- Photodiode (Electrostatics, Conduction-Convection module)
- Wafer fusion (Thermal-structural module)
- Conclusion and future work





## Introduction

#### Astronomy



Image Credit: Canada-France-Hawaii Telescope. Starburst galaxy NGC7469

#### Medical Imaging (Human Retina)



Image courtesy Center for Adaptive Optics.



- Wavefront aberration correction
- Spatial light modulators
- Moving MEMS mirrors for dynamic correction







3-D Schematic of a single pixel of the MEMS device





## **Actuation Mechanism**





**Operation points on the I-V curves** 



Equivalent circuit

- Allows parallel addressing of large arrays
- **Different** material systems integrated
- TaN thin film resistors
- SiN mirrors
- GaAs detectors





# **Design Parameters**



2-D Schematic of a single pixel

#### Silicon Nitride mirrors

- Low stress → Low voltage actuation
- Displacement ≈ 1-2 microns

GaAs PIN diode

- Low dark currents, high photo current
- Breakdown voltage to be higher than actuation voltage

#### Wafer Fusion

- High stress, high temperature
- Eliminate fixture failure
- Uniform bonding





## **Silicon Nitride mirrors**



Thin film indentation

- PECVD low stress SiN films (≈23MPa residual stresses)
- Two layer interpolation method, to determine Y= 250-270MPa



Spring plate indentation

- Mechanical characterization
- \* Indenter Studies, force vs displacement
- \* COMSOL Structural mechanics
- Optical characterization
- \* Interferometer studies, voltage displacement
- \* COMSOL Electrostatics + Structural mechanics





### Model



Close up of the mesh



**Mirror dimensions** 

- 500nm thickness
- Point load approximated by boundary load
- 0 to 5 micro newtons load
- 4 layer mapped mesh





**Force vs Displacement** 



Simulation showing 980nm displacement for 1 µN face load



Plot showing the force vs displacement curve from COMSOL and Hysitron Nanoindenter

- Spring constant ≈ 0.98 N/m
- Displacements upto 1.5 microns
- Max stress at the fixed arms





# **Voltage vs Displacement**





500nm displacement for 10volts





CCD images of captured fringes





## **GaAs Photodiode**



| q        | 1.602e-19[C]     | Elementary charge                |
|----------|------------------|----------------------------------|
| Т        | 300[K]           | Room temperature                 |
| k        | 1.38e-23[J/K]    | Boltzmanns constant              |
| epsilonr | 12.9             | Rel. permittivity for GaAs       |
| ni       | 1.45e13[1/cm^3]  | Intrinsic concentration for GaAs |
| mun      | 8000[cm^2/(V*s)] | Electron mobility for GaAs       |
| mup      | 400[cm^2/(V*s)]  | Hole mobility for GaAs           |
| Dn       | k*T/q*mun        | Electron diffusivity             |
| Dp       | k*T/q*mup        | Hole diffusivity                 |
| taun     | 0.1[us]          | Electron life time               |
| taup     | 0.1[us]          | Hole life time                   |
| NApmax   | p*1e15[1/cm^3]   | Maximum p-type doping            |
| NDn      | p*1e12[1/cm^3]   | I layer n-type doping            |
| NDnmax   | p*1e15[1/cm^3]   | Maximum n-type doping            |
| Va       | 0[V]             | Applied voltage                  |
| y1       | -6.00E-07        |                                  |
| c1       | q/(k*T)          |                                  |
| y2       | -1.60E-06        |                                  |
| р        | 2000             |                                  |

• Uniform doping assumed

**GaAs properties** 

- Dopings ramped up
- Drift and diffusion solved using cond/conv module





### **Results**







#### **Results**







### **Breakdown Studies**



#### Current design

P, N layer  $\approx 1.8E1 + 8$  cm<sup>-3</sup>, I Layer  $\approx E + 15$ 

I Thickness ≈ 1micron





### Characterization



Schematic of ohmic contacts

- Wet etch to form mesas
- Reverse biased ohmic contacts
- 300 micron width



Photo response characterization setup





## Comparison







#### Wafer Fusion



- ≈ 700 degrees C
- High pressure
- Custom designed fixture





#### **Wafer Fusion**





3-D Schematic of wafer fusion components



Photo of an assembled fixture





### **Problem**



- Non uniform bonding
- Defects
- Peeling off during wet etch

Thermal stress failure





# **Original design**







### **Stress distribution**







## **Problem**



- Bottom end fixed
- Quartz tube tends to squeeze
- No room for expansion





## **Design changes**



Top graphite radius of curvature reduced





## **Design changes**







## **New Samples**



SEM of GaAs/GaP bonded interface

- Cleaner bonding interfaces
- Eliminated quartz failure



PIN diodes transferred on GaP substrate





## **Conclusion & Future Work**

**Basic models developed :** 

to study the electrostatic actuation of spring plates

to study behaviour of our PIN diode structure

wafer fusion fixture

64 Bit workstation with 28Gb RAM

#### **Future work :**

- Study effect of changing spring plate thickness
- Varying PIN diode dimensions, and photo response





## Acknowledgement

#### •Work partially funded by United States Air Force





www. uml.edu/photonics