

用于TRISO燃料颗粒性能 多物理场耦合分析的 COMSOL模型

Excerpt from the Proceedings of the 2016 COMSOL Conference in Shanghai

在役高温气冷堆燃料元件的核心部件,同时也是用于轻水堆的全陶瓷微密封 (FCM) 耐事故燃料(ATF) 元件的关键组成部分。

结构:

- 燃料核芯 UO₂
- 疏松热解碳层 Buffer层
- 致密热解碳层
 IPyC层
 OPyC层
 - 碳化硅层 SiC层

TRistructure ISOtropic Dense Inner Pyrolytic Carbon Dense Outer Pyrolytic Carbon Porous graphite buffer layer

COMSOL 有限元、多物理场耦合——热/力/扩散

Code	PARFUME	PASTA	ATLAS	STRESS3	TIMCOAT	GA/KFA	JAERI
Developer	INL (US)	TU Delft (NL)	CEA (FR)	BNFL/NS (UK)	MIT (US)	GA/KFA (US)/(DE)	JAERI (JP)
References	[9,18,45-47]	[44,48,49]	[9,17]	[9,17,50]	[16]	[17,52]	[17,51]
Mission	NPR/AGR, NGNP	PUMA (EU)	FBR MOX	None specified	HTRs	Multiple	HTTR
Assumed geometry	Pebble bed, prismatic	None	None?	None	Pebble bed, prismatic	None	None
Pressure calculation	R-K EOS	R-K EOS	R-K EOS	Unknown	IGL	R-K EOS	IGL
CO production method	HSC-based yield	Custom (Nabielek?)	unknown	Martin	Karsten (KFA)	None, LEU, HEU	Proksch
Heat transfer calculation	1D finite difference with buffer/IPyC gap	THERMIX calculation with buffer/IPyC gap	Finite element	Unknown	Full-core then particle	Single irr. temp. used	Single irr. temp. used?
Phenomena modeled	Pressure, PyC IIDC, PyC irr. creep, thermal expansion, SFP swelling, FP diffusion	Pressure, PyC IIDC, PyC irr. creep, Thermal expansion	Pressure, PyC IIDC, PyC irr. creep, SFP swelling, GFP swelling	Pressure, PyC IIDC, PyC irr. creep, SFP swelling, SiC elasticity	Pressure, PyC IIDC, PyC irr. creep	Pressure, PyC IIDC, PyC irr. creep, SFP swelling	Pressure, PyC IIDC
Failure mechanisms modeled	PV, IPyC cracking, debonding, asphericity, SiC thinning, SiC thermal decomposition, kernel migration	PV, IPyC cracking	PV, IPyC cracking, debonding, asphericity	PV, IPyC cracking, debonding	PV, IPyC cracking via fracture mechanics	PV	PV
PyC shrinkage correlation	Custom	FZJ	Unknown	Custom	Unknown	Unclear	Unknown
PyC irr. creep coefficient (MPa n m ⁻²) ⁻¹	$c = 5 \times 10^{-29}$ v = 0.5 or $c = 4 \times 10^{-29}$ v = 0.4	3.0 × 10 ⁻²⁹	Unknown	4.9 × 10 ⁻²⁹	CEGA function	2.0 × 10 ⁻²⁹	Unknown
Fission gas release model (s)	Recoil + booth	Modified booth (cyclic situation)	Unknown	Unknown	UT/KFA (booth- based?)	Booth	Booth (single species)
Displacement calculations?	Yes	Yes	Yes	Yes	Yes	No	No

J.J. Powers, B.D. Wirth Journal of Nuclear Materials 405 (2010) 74-82

BISON

J.D. Hales et al., Journal of Nuclear Materials 443 (2013) 531–543

2 材料性能和行为模型

• 控制方程组

能量守恒
$$\rho C_p \frac{\partial T}{\partial t} = \nabla \cdot (k \nabla T) + E_f \dot{F}$$

动量守恒
$$\nabla \cdot \boldsymbol{\sigma} + \rho \boldsymbol{f} = 0$$

质量守恒
$$\frac{\partial C_i}{\partial t} = \nabla \cdot \nabla \left[\sum_m D_{0,m} \exp \left(\frac{-Q_m}{RT} \right) \right] C_i - \lambda_i C_i + S_i$$

采用 COMSOL 多物理场耦合计算平台, 基于有限元方法求解以上控制方程组!

-5-

2 材料性能和行为模型

TRISO燃料颗粒的材料物性和行为模型随燃耗、温度、快中子通量等参数的变化具有明显的非线性特点,造成复杂的多物理场非线性耦合问题。

• UO2核芯肿胀,密实,热膨胀

$$\dot{V}_{solid} = 5.577 \times 10^{-5} \rho_{UO_2} \frac{dBu}{dt} \qquad \dot{V}_{gas} = 1.96 \times 10^{-31} \exp[-0.162(2800 - T)](2800 - T)^{11.73} \exp(-0.0178 \rho_{UO_2} Bu) \\ \Delta V_{den} = \Delta \rho_0 \left[\exp\left(\frac{Bu\ln(0.01)}{Bu_D C_D}\right) - 1 \right] \qquad * \rho_{UO_2} \frac{dBu}{dt}$$

-6-

• PyC层蠕变,辐照变形,热膨胀 IPyC和OPyC $\dot{\varepsilon}_{\theta} = -0.036 \exp(-2.1\Phi) - 0.01$ $\dot{\varepsilon}_{r} = -0.077 \exp(-\Phi) + 0.031$

 $\dot{\varepsilon}_r = \dot{\varepsilon}_{\theta} = -0.176 \exp(-0.175\Phi)$

Buffer

$$\dot{\varepsilon}_{cr,r} = K_{pyc} [\sigma_r - \nu_c (\sigma_\theta + \sigma_\phi)] \dot{\Phi}$$

• SiC层蠕变,热膨胀 $\dot{\varepsilon}_{cr} = K_{sic} \sigma_e \dot{\Phi}$

2 材料性能和行为模型

• 裂变气体释放和CO气体产生模型

Booth模型

3 模型验证及应用

RFUEL

IAEA CRP6-case 4a •

SiC层内表面切应力

1.5

Fluence (10²⁵n/m² E>0.18 MeV)

2.0

2.5

3.0

1.0

只包含IPyC和SiC层

温度恒定为1273 K, 忽略热膨胀和辐照蠕变, 仅考虑IPyC层的 各向同性辐照变形。对比验证的指标为IPyC和SiC层内表面切应 力随快中子注量的变化规律(快中子注量≤3×10²⁵ n/m²)。

初始条件: IPyC层内表面半径为350 µm, 厚度为40 µm; SiC层内表面半径为390 µm,厚度为35 µm。

边界条件: IPyC层内表面承受恒定内压25 MPa, SiC层外 表面承压0.1 MPa。

3.5

-8-

200

0

0.0

0.5

3 模型验证及应用

• IAEA CRP6-case 8

包含IPyC, OPyC和SiC层

考虑热膨胀,辐照蠕变,辐照变形。对比验证的指标为IPyC和 SiC层内表面切应力随快中子注量的变化规律(快中子注量 ≤3×10²⁵ n/m²)。

初始条件: IPyC层内表面半径为350 μm,厚度为40 μm; SiC层内表面半径为390 μm,厚度为35 μm。

边界条件:IPyC层内表面承受内压和温度变化如下图, SiC 层外表面承压0.1 MPa。

-9-

3 模型验证及应用

• TRISO颗粒 高温气冷堆运行参数

参数名称	值
燃料颗粒的热功率	50 mW
辐照时间	2.5年(7.6×10 ⁷ s)
快中子注量率	5×10 ¹⁷ n/(m²⋅s)
最高燃耗	12% FIMA
UO2核芯直径	425 µm
Buffer层厚度	100 µm
IPyC层厚度	40 µm
SiC层厚度	35 µm
OPyC层厚度	40 µm

- Case1:燃料颗粒外表面温度恒定1500 K;
- Case2:燃料颗粒外表面温度在辐照末期跃升为1700 K 不均为的SiC厚度;

• TRISO颗粒 高温气冷堆运行参数

裂变气体和内压

切向应力

SiC层压力壳失效概率

- 考虑的裂变气体为Kr和Xe。由于气体在间隙和Buffer层累积,内压上升。辐照后期内压来 源主要为生成的CO气体。
- 随着裂变气体和CO气体造成的内压逐渐上升,SiC层在切向方向上受到拉应力。当拉应力 大于其断裂强度时,SiC层可能发生压力壳式失效从而造成燃料颗粒失去阻碍裂变产物泄漏 的屏障,因此内压对燃料颗粒结构完整性具有重要影响。
- SiC层的失效概率较低,但随着其所受拉应力增加,失效概率将迅速上升。

• TRISO颗粒 高温气冷堆运行参数

- 建立起了TRISO燃料颗粒的热传导、力学和裂变产物扩散方程的多物理场耦合 分析模型。
- 采用IAEA CRP-6基准题对建立的多物理场耦合分析模型进行了对比验证;采用本模型对典型的高温气冷堆TRISO燃料颗粒正常运行工况下的行为进行了分析并且与BISON程序进行了对比,这表明了模型的合理性。
- 在TRISO燃料颗粒的辐照过程中,Buffer层与IPyC层之间将出现间隙,影响燃料颗粒的导热效率;Buffer层和间隙中累积的裂变气体和CO气体产生的内压对SiC层的受力状态具有重要影响,过大的内压将明显提高SiC层失效概率。随着温度增加,SiC层阻挡裂变产物往外扩散的能力也将下降。