

Multiple-Mode Polymer-Silicon Dual Channel Gas Sensors

K. Liang, D. Sharma, A. Dodabalapur Microelectronics Research Center, University of Texas at Austin, Austin, TX, USA

I. Key Device Design Features:

- **Refreshable** memory mode chemical detection device
- **Organic Polymer Top Channel:** High chemical responsivity, "designer material", solution based fabrication
- Silicon Bottom Channel: Reliable device performance, fast device operation, easy device integration with the current largescale electronics manufacturing processes
- 3 additional sensing modes: chemical field-effect transistor

III. Results:

Reducing effects of dopant spreading can improve sensor responsivity by up to a factor of 3, can be implemented by increasing metal gate width

Parameter

Value

54

40-100

4x10¹⁶

0.08

0.30

Unit

μm

μm

cm⁻³

μm

μm

Free **A**

1,989,189

2 hr 45 min

Decreased numbers of mesh elements and shorter runtimes can be achieved with Mapped Rectangular Meshes.

Lightly Doped Channel Junction Depth

Figure 2. Multimode Operation of Dual Channel Sensors

II. Computational Methods:

• Drift Diffusion Model: **Drift-Diffusion Equation**

$$\mathbf{J}_{n}(\mathbf{r},t) = n\mu_{n}\nabla \mathbf{E}_{c} + \mu_{n} k_{B}TG(n/N_{c})\nabla n + \frac{nq}{T}D_{n,th}\nabla T$$
$$\mathbf{J}_{p}(\mathbf{r},t) = p\mu_{p}\nabla \mathbf{E}_{v} + \mu_{p} k_{B}TG(p/N_{v})\nabla p - \frac{pq}{T}D_{p,th}\nabla T$$

Poisson's Equation

$$\nabla \cdot (-\varepsilon_r \nabla V) = q(p - n + N_d^+ - N_a^-)$$

Current Continuity Equation

$$\frac{\partial n}{\partial t} = \frac{1}{q} \left(\nabla \cdot J_n \right) - U_n , \qquad \frac{\partial p}{\partial t} = \frac{1}{q} \left(\nabla \cdot J_p \right) - U_p$$

Figure 4. Wireframe Donor Doping Profile; Scale 1:10

IV. Conclusions:

- **Improvement of gate control** can further improve analyte detection sensitivity by up to 3x while simultaneously lowering the device's operation voltage in ChemFET mode.
- Mapped Rectangular Meshing is a good candidate for speeding up semiconductor device simulations with thick substrates while retaining high accuracy near key interfaces
- Simulation of Dipolar Interaction with organic semiconductors can provide further insights for this 4-terminal sensor design

- Mapped Rectangular Mesh:
 - Reduction in mesh points from free triangular for device with \bullet high aspect ratio
 - Dense near oxide interface, area of high variability; coarse far lacksquarefrom the oxide interface, faster element growth rate

Work supported in part by NSF

This work is based upon work supported in part by the National Science Foundation under Cooperative Agreement No. EEC-1160494. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

References:

- D. Sharma, et. al., "Organic and hybrid organic/inorganic transistors for chemical and bio sensing," IEEE IEDM Technical Digest., 453-456 (2005)
- 2. H. Bai, G. Shi, "Gas Sensors Based on Conducting Polymers. Sensors," Sensors, 7(3), 267-307 (2007)
- B. Adhikari, et al., "Polymers in sensor applications", *Prog. Polym. Sci.*, 29, 699–766 (2004).

Excerpt from the Proceedings of the 2016 COMSOL Conference in Boston