Analysis of an Electrochemical Machining Process for Particle Reinforced Aluminium-Matrix Composites

M. Hackert-Oschätzchen¹, N. Lehnert¹, M. Kowalick¹, C. Scherf², D. Kuhn¹, A. Martin¹, A. Schubert^{1,2}

Electrochemical Machining of Aluminium Matrix Composites (AMC)

- Particle reinforced metals are difficult to machine due to different local conditions
- AMCs consist of aluminium alloy EN AW 2017 as matrix material, reinforced by SiC particles
- Investigation of Jet Electrochemical Machining
 (Jet- ECM) as alternative technology for finishing machining → targeted uncovering of SiC particles (Fig. 1)
- Dissolution simulation with a fully coupled model using interface primary current distribution in the field of electro-chemistry (**Fig. 2**)

Results

- Performing removal simulation up to electro-chemical machining time of *t* = 0.039 s (**Fig. 3**)
- Current density minimum of 20 A/cm² at particle tip
- Current density maximum of 69 A/cm² at the transition from particle to matrix
- Local current density maximum next to SiC particle leads to increased material removal in this area during machining process (**Fig. 4**)

Model creation

- Derivation a 2-D axisymmetric model from the cylindrical geometry of Jet-ECM an AMC unit cell (**Fig. 6**)
- Deriving particle size from SEM-image (Fig. 5)
 → Averaged size of 1.0 µm
- Deriving double cone while maintaining the particle volume

Allocation of defined settings		
Domain	Material	Defined setting
	Electrolyte	$r_{\rm El} = 0.94 \ \mu \mathrm{m}$ $h_{\rm El} = 100 \ \mu \mathrm{m}$ $\sigma = 70 \ \mathrm{mS/cm}$
	Aluminium alloy EN AW 2017	$r_{\rm AL} = 0.94 \ \mu { m m}$ $h_{\rm AL} = 1.88 \ \mu { m m}$ $\rho = 2.8 \ { m g/cm}^3$ $M = 28.77 \ { m g/mol}$
	SiC	$r_{\rm DC} \approx 0.63 \ \mu \rm m$ $h_{\rm DC} \approx 1.26 \ \mu \rm m$

• Prediction of removed material and resulting geometry by applying Faraday's Law $(z_A = 2.7)$:

$$\vec{v}_{a} = \frac{M}{\rho \cdot z_{A} \cdot F} \cdot \vec{J}_{n} \cdot \eta(J)$$

Acknowledgements

The authors acknowledge the DFG (German Research Foundation) for supporting this work carried out within the framework of project SFB 692 HALS.

Figure 1. Scheme of the AMCs before and after the EC-processing for targeted uncovering of the reinforcement SiC particles

Figure 3. Workpiece shape and false color rendering of the electric current density at t = 0 s and at t = 0.039 s

Figure 5. SEM-image of an AMC surface for ascertaining the averaged particle size

Figure 6. Scheme of jet electrochemical machining of AMC and derived 2-D axisymmetric model geometry for Jet-ECM of particle reinforced AMC