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PROGRAMME

Microfluidic devices, also known as Lab on a Chip, are currently facing an increasing demand, especially in the fine chemistry sector and, more
specifically, in the pharmaceutical and food industry. The use of these microreactors leads to green and economical production methods due to a
higher selectivity of target products and reduced waste. Ultrasonic irradiation has been successfully implemented for preventing clogging in
microreactor configurations, ranging from capillaries immersed in ultrasonic baths to devices with miniaturized piezoelectric transducers. Moving
forward in process intensification and sustainable development, the acoustic energy implementation requires a strategy to optimize the microreactor
from the ultrasonic viewpoint during its design. This can be achieved with appropriate modeling through finite element methods.
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The usual workflow to optimize the benefits of US within microreactors is by changing the applied
frequency once the device is mounted.
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CONCLUSIONS

* The incorporation of ultrasound irradiation offers potential advantages for preventing microreactor-related problems and enhancing their performance.

* Analytical models give an idea of the dimensions of the backing and matching elements in contact with the piezoelectric actuator for achieving resonance.

* Numerical simulations can help both rationalize the experimental results and gain insights into the physics involved in sono-microreactors which can lead ultimately to optimized devices
* Further work is underway to extend the acoustic simulation by involving several multiphysics phenomena such as fluid dynamics and chemical reaction.
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