Structural Performance of Polymeric Composite Members in a Transmission Line Tower

R. Hernández-Corona¹, I. Ramírez-Vázquez¹

1. Instituto de Investigaciones Eléctricas, Transmision y Distribucion, Cuernavaca, Morelos, México

Introduction: The objective is to evaluate the feasibility for using polymeric composite members instead of steel members as redundant members in transmission towers by computing the critical buckling load trough a linear buckling analysis.

Figure 1. Transmission line tower with and without redundant members in the bottom panel.

Computational Methods: The evaluation is performed by determining the value of the load at which the tower instability occurs, solving an eigenvalue problem for the load multiplier λ .

$$(K_L)\mathbf{u}_0 = \mathbf{f}_0$$

$$(K_L + \lambda K_{LN}(\mathbf{u}_0))\mathbf{u} = 0$$

where \mathbf{u} is the displacement vector, \mathbf{f} is stationary load and K is the total stiffness matrix. K is split into a lineal part (K_L) , and a nonlinear contribution (K_{NL}) . The obtained value of λ at which the structure becomes unstable is the critical load factor

Figure 2. Made models to analyze the structural performance.

Results: The results obtained, in terms of critical load factor (FCL), are presented in Table 1. Figure 3 shows the total displacements for the different simulated cases. A critical load factor lower than 1 means that the structure is in an elastic instability condition.

Model	With steel redundant	Without redundant members	With polymeric material	Critical load factor=2.514351 Sufface: Total displacement (m) 8 19.334 18 16 14 12 10 8 6 4 2 7 x 0 7 x 0	sical load factor=0.726774 Surface: Total displacement (
Case 1	7.17	1.05	2.13	Critical load factor=1.025598 Surface: Total displacement (m)	
Case 2	2.51	0.73	1.03	14	
Case 3	2.27	0.80	1.03	6 10 8	case 2
Table 1 . Critical load factor values obtained for the different				2 y, x	
cases	simulate	ed with C	OMSOL.	Critical load factor=2271922 Sulface: Total displacement (m) Crit	ical load factor=0.802984 Surface: Total displacement (

case 1

Figure 3. Displacement obtained with COMSOL.

Conclusions: The feasibility of use composite material redundant members in the bottom panel of a transmission line tower was evaluated using COMSOL. The evaluation was performed by a linear buckling analysis.

References:

- 1. ASCE 10-97 Standard, Design of Latticed Steel Transmission Structures, (2000).
- Selvaraj, M., Kulkarni, S.M., and Ramesh Babu, R., Structural Evaluation of FRP Pultruded Sections in Overhead Transmission Line Towers, *International Journal of Civil and Structural Engineering*, vol. 2, no.3, pp. 943-949 (2012).