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Indirect foaming via precursor: physical phenomena

melted Al and H, gas
Foaming [1,2,3] is a complex phenomena:

e simultaneous mass, momentum and energy
transfer mechanisms

» several physical phenomena on interfaces,
interface motion

* bubble expansion, dynamics, coarsening,

rupture

» other aspects (drainage, mould filling,
geometry)

 difficulty for experimental measurements [ —————
(foams are hot, opaque, etc.) Bkl iw Oy PN

4 v z I.
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Bubble expansion: model

Two Phase Flow, Level Set interface, t = time i pexr
Weakly-Compressible [4] :

o = surface tension coefficient

aa_p +V.(pu)=0 continuity
t

p"ja_;up(u.vw = V. [-pl+n(Vu+(Vu)")

2n

—(— -k XV U)l]+F+ pg +F; momentum
3 20
Ry =——
¢ \Y, P — P
E+U-V¢=J’V°[€V¢—¢(1—¢)|VT¢|] level set ¢ =
Z without flow at time t
Yo
po () = )
1 [ 26 | : . )
1+ L Poo— (Peq o+ )J t during the expansion at time t [5]
an . R,

n,dynamic viscosity of the liquid
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Peo =190.1Pa, p, =2.4x10° kgm °, x4 =4.5x10 " Pa.s

Volume fraction of hydrogen: time 0.006 [s]

x10™

v =22 10%x10 " m2s
P

Re = 293

40

z coordinate [m]

rAX coordinate [m] Yo
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A 2D solid region of precursor partially filling a circular
mold placed horizontally inside a furnace.

Complex phenomena as bubble nucleation, their
location, growth, etc. simplified. Air of the cavity

substituted for H, (only 2 fluids). ;“,ﬁf,ﬁ‘”‘i.‘io.d
A simplified model [6] may be used for metal foaming,
by assuming that:
e Step1:
heat is transferred from the furnace wall to the solid
precursor ;
°© Step 2: . AISI4340
H, starts to be released, then N H, bubbles are ‘ W stee
evenly generated inside the solid Al. : A
. Step 3: Texr

The N bubbles start expanding and moving after
that Al is melted.
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(Heat transfer module [7] and level set method of the CFD module [4]):
on the mold wall: 2.6 x 10 3> m

Free triangular mesh \
continuity Magnitude Symbol | Value \
\ Max element size of the - 1.3x10% m
gas expansion rate: P (1) = pg o P( 1) mesh
Time stepping - set by the
solver

momentum transfer Relative tolerance - 107

Absolute tolerance - 107

Interface thickness £ 1x10™* m
interface movement (level set) Reinitialization y 0.1 m/s

+ DOF:

Step1and 2:3.4x10°
Step 3: 1.83 x 106

heat transfer

Segregated steps for the nonlinear solver
First: flow and level set variables
Second: heat transfer variables

oT
pcpa—+pCpUVT =V-(kVT)+Q
t

TIME STEP (direct solver PARDISO):

Step 1:initial 10°®s, final 31's

Step 2: initial 10 s, final 58 s

Step 3: 102 s (10> s when bubbles are merging)
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Vol. frac. of H2, veloc. vect. and streamlin. at timet = 1.593 s Volume fraction of H2 at time t = 1,942 s
0.025 . - Al 0.035 T T .vn T al T 1 A1l
0.02 1 ] e merged 1
0.9 0.025 - 0.9
0.015 - 0.02 |
0.8 — 0.8
E‘ 0.01 d E 0015+ 1
— ' 0.7 ; 0.01 B4 0,7
L 0.005 1 & 0.005 | .
g 106 c o | 0.6
- 0 4 — - 4
o o)
2 0.5 & -0.005 | 03
o -0.005 1 o
o N 0.4 O -0.01f _ L
> 001 - ‘ >.0,015 4
0.3 0.02 - | 0.3
0.015 1
0.2 -0.025 0.2
0,02 1 0,03 1
0.1 0.1
\ \ \ \ : : -0.035 \ I : : 1 1
0005 0 0.005 0.01 0.015 0.92 0.025 0.03 0.035 0.04 0.045 0 -0.02 -0.01 0 001 ! 0.02 0.03 0.04 0.05 0
x coordinate [m] Yo x coordinate [m] Yo
merging of two central bubbles with fluid acceleration, four central bubbles have merged after

after 1.593 s the expansion is started 1.942 s the expansion is started
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The liquid metal is suctioned from the capillary films to Pgo=P_+0 k
the borders of the foam (Plateau borders) causing the
interfaces to thin and bubbles to merge. Pgo Is the same — p, , >p 4

The drainage of the thin films is slowed and prevented
when interactions between the film surfaces come into
play (disjoining pressure I1(h), [8]).

Rubble i

In the model, once the film h between the bubbles
became sufficiently small, we take into account the
disjoining pressure II(h) (representing a stabilization
effect reducing the driving force for film thinning):

Pgo =P +0O k + H(h) <«— | disjoining pressure

o = surface tension coefficient
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Modeling by the phase field method

Equations (coupled)  (CDF and Chemical Reaction Engineering modules):

1. gas compressibility considered

continuity momentum transfer
2. flowis laminar
op ou 2
E+V «(pu)=0 pa—+p(u .V)u=V.[-pl +77(VU+(VU)T)—(?77—K‘DV WV I+ F + pg + F,
t

gas expansion rate:  Pc (1) = pg o (1)

interface movement ( phase field ¢ )

o¢ yl e’ ) of

D ouwvp=v. vy W=—V-€2V¢+(¢2—1)¢+[_} =

ot g’ 4 ) 04 || help variable v

of
Fey=|G-—1|V¢ :
( o ] Surface tension force
¢ =1| hydrogen phase ¢ =0| aluminium
=05 i i \- 2

$m =0-5| the middle of the interface -
— Al =
— — in Comsol:

But when two bubbles External force [9] 4 ~

are approaching m=) | (due to the disjoining o [QJV y

pressure) o
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in Comsol
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- (af jw External force (due to the disjoining pressure) is a defined

source of free energy

Ci.‘

Cj

to track each interface (if N=number of bubble is > 1):
assigning a marker ¢; to each bubble i and moving the marker like a species in the system, with the
same velocity field of the corresponding bubble [10]

=

transport of diluted species (Fick’s eq. and convection term), [11]

C.
— TVEDive) Ve =R g then, if ¢, xc; > set value
D, =10 ®m?/s the marker is only convected =) disjoining pressure is switched on
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y coordinate [cm)]

YOO PWUNEHORNWDS ULV~

Volume fraction of gas at time t=1.55 [s]

-~— - —p-

Al

-10 5
X coordinate [cm)]

two central bubbles have already merged
after 1.55 s the expansion is started

10

0.9
0.8
0.7

{0.6

{0.5
0.4
0.3
0.2
0.1

Yo

y coordinate [cm]

without repulsive effects

Surface tension force (N/m°) at time t=1.55[s]

| A 6.2934x10*
x10*

LobhbhRNEORNWSEULVO

-10 5 0 5 10 »
x coordinate [cm)] V¥ 1.2131x10°
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il
Volume fraction of gas at time t=1.55[s]
R w g Al with repulsive effects due to the
6 1 al disjoining pressure
5 3
4 | §o.9
T 3 : Mo.s
S 2 ~
¥ 1 | W7
£ 0 I Ho.s
T -1t i Hos External body force [N/m”~3] at time t= 1.55 [s]
8 -2 ~ I ' ) ' | A 6.1263x10°
¢ 5l | Ho.a 7 = —_ x10*
-4 { M0.3 B 6
"3 | Qo2 4
-6 ' 3 3 5
'7 1 01 ‘g_)‘ 2
-10 -5 0 5 10 g 1 {4
x coordinate [cm] ¥ 3.7465x107" £ 0
T
5 ‘
> -3
. . . -4 2
volume fraction of H, a the same time, with the 5
disjoining pressure setting a repulsive stabilization ‘_‘; 1
effect between the bubbles interfaces é
0

-10 -5 0 10
X coordinate [em] v

closer bubbles
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*A modeling work by using Comsol Multiphysics has been developed for simulating a metal foam
manufactured by an indirect foaming process via precursor.

* Bubble expansion, heat transfer and movement of H, gas bubbles in liquid Al has been modeled for a
metal foam expanding in a 2D mold, driving the expansion by a specific expansion rate.

*Then, an expanding foam in a mold has been simulated with repulsive forces modeling the disjoining
pressure by diffuse interface methods.

* Numerical findings verify that the computational model, based on level set or phase field
techniques, can be effective for modeling the foaming process of a metal.

*Finally, for more comprehensive foaming models, computational requirements should be also
considered.
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