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Indirect foaming via precursor: physical phenomena 
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Foaming [1,2,3] is a complex phenomena:

• simultaneous mass, momentum and energy 
transfer mechanisms

• several physical phenomena on interfaces, 
interface motion

• bubble  expansion, dynamics, coarsening, 
rupture

• other aspects (drainage, mould filling, 
geometry) 

• difficulty for experimental measurements 
(foams are hot, opaque, etc.)
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melted Al and H2 gas

solidified metal foam



Bubble expansion: model
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Two Phase Flow, Level Set interface,
Weakly-Compressible [4]
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 = surface tension coefficient
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Bubble expansion: simulation
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Expanding a metal foam: model
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A 2D solid region of precursor partially filling a circular 
mold placed horizontally inside a furnace. 

Complex phenomena as bubble nucleation, their 
location, growth, etc. simplified. Air of the cavity 
substituted for H2 (only 2 fluids).

A simplified model [6] may be used for metal foaming, 
by assuming that:

• Step 1: 

heat is transferred from the furnace wall to the solid 
precursor ;

• Step 2:

H2 starts to be released, then N  H2 bubbles are 
evenly generated inside the solid Al.

• Step 3:

The N bubbles start  expanding and moving after 
that Al is melted.

TEXT
T0

mold
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Expanding a metal foam: model
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Equations (coupled)

(Heat transfer module  [7] and level set method of the CFD module [4]): 

gas expansion rate: 

Free triangular mesh 

on the mold wall: 2.6 x 10 -3 m

DOF:
Step 1 and 2: 3.4 x 105

Step 3: 1.83 x 106

Segregated steps for the nonlinear solver
First: flow and level set variables
Second: heat transfer variables

TIME STEP (direct solver PARDISO):
Step 1: initial  10-6 s, final 31 s
Step 2: initial 10-2 s, final  58 s
Step 3: 10-2 s  (10-5 s when bubbles are merging)

interface movement (level set) 
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Expanding a metal foam: simulation of step 3 
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merging  of two central bubbles with fluid acceleration, 
after 1.593 s the expansion is started

four central bubbles have merged after 
1.942 s the expansion is started

merging
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merged



Modeling the disjoining pressure
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The liquid metal is suctioned from the capillary films to
the borders of the foam (Plateau borders) causing the
interfaces to thin and bubbles to merge.

The drainage of the thin films is slowed and prevented
when interactions between the film surfaces come into
play (disjoining pressure Π(h), [8]).

In the model, once the film h between the bubbles
became sufficiently small, we take into account the
disjoining pressure Π(h) (representing a stabilization
effect reducing the driving force for film thinning):
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Modeling by the phase field method
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Equations (coupled)    (CDF and Chemical Reaction Engineering modules): 

interface movement   ( phase field       ) 
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But when two bubbles 
are approaching 

External force  [9]
(due to the disjoining 
pressure)
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Modeling by the phase field method
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External force  (due to the disjoining pressure) is a defined 
source of free energy

in Comsol

to track each interface   (if N=number of bubble is       1):
assigning a marker ci to each bubble i and moving the marker like a species in the system, with the 
same velocity field of the corresponding bubble [10]
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disjoining pressure is switched on

transport of diluted species (Fick’s eq. and convection term), [11]
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Simulations:  without disjoining pressure
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without repulsive effects

two central bubbles have already merged 
after 1.55 s the expansion is started

merged



Simulations:  with disjoining pressure, stabilization effect

1318/11/2014COMSOL CONFERENCE,  2014 CAMBRIDGE

with repulsive effects due to the 
disjoining pressure

volume fraction of H2 a the same time, with the
disjoining pressure setting a repulsive stabilization
effect between the bubbles interfaces

closer bubbles



Conclusions
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•A modeling work by using  Comsol Multiphysics has been developed for simulating a metal foam  
manufactured  by an indirect foaming process via precursor.

• Bubble expansion, heat transfer and movement of H2 gas bubbles in liquid Al has been modeled for a 
metal foam expanding in a 2D mold, driving the expansion by a specific expansion rate.

•Then, an expanding foam in a mold has been simulated with repulsive forces modeling the disjoining 
pressure by diffuse interface methods.

• Numerical findings verify that the computational model, based on  level set or phase field 
techniques, can be effective for modeling the foaming process of a metal. 

•Finally, for more comprehensive foaming models, computational requirements should be also 
considered. 
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