

COMSOL Multiphysics[®] Based Identification of Thermal Properties for Mesoporous Silicon by Pulsed Photothermal Method

Ibrahim El Abdouni¹, Amer Melhem¹, Madjib Semmar^{*1}

¹GREMI-UMR 7344, CNRS Université d'Orléans, 14 rue d'Issoudun, BP 6744, 45067 Orléans Cedex 2, France *Corresponding author: Nadjib.semmar@univ-orleans.fr

COMSOL CONFERENCE 2014 CAMBRIDGE

Outline

- 1) Motivation for thermal identification of TFM/CM
- 2) Pulsed Photo-Thermal technique (PPT)
- 3) Structural characterization
- 4) COMSOL Computation
- 5) Results & Conclusion

Motivation for mesoporous Si

➢ We are interested by MS Si for Luminescence, PV applications and microsystems like fuel cells, and for electronic (Front and Back-end). See references

> Thermal characterisation of MP Si is based on fast optical techniques like photothermal, and needs analytical models for 1 or 2D thermal problems.

Numerical models are needed (Comsol[®])!

1) Experiments by PPT

2) Modelling of laser heating by COMSOL

 Identification of Thermal Properties (k, Rth, ...)

PPT methods : Principles

- 1) Near surface laser heating
- 2) IR detection (needs fast detectors!)
- 3) Recording of surface temperature versus time (in the nanosecond regime)

3

4) Optimisation of the computed thermal signal versus thermal parameters : Correlation between experiments and Comsol thermal curves.

Experimental device

- 1) Pulsed laser heating of samples (λ =248 nm; τ = 27 ns; *F*= 100 mJ/ cm²)
- IR signals are focused using off-axis paraboloid mirrors (1 to 12 μm) onto a fast HgCdTe detectror, liquid nitrogen cooled.
- 3) The output electrical signal (voltage) is recorded onto a wide-band oscilloscope (up to 4 GHz).
- Calibration procedure: conversion of the electrical signal into absolute temperature.

SEM and FTIR

for size and porosity implementation

- Electro-chemical eching for Mono-cristallyne n type (100) fabrication at 0.2,1,10 & 50 μ m depth.

- Sample sizes (10 X 10 X 0.5 mm)

Ti transducer by magnetron sputtering deposition

To ensure homogeneous absorption of the incident photons (UV) and a high and stable IR emission. Finally to create a surface (less than 200 nm) heat source

b

Thermal contact resistance (R_{th})

Induces by the Ti/MP Si interface. It's a very important parameter for thermal field and temperature response evaluation.

GREMI

Comsol Multiphysics

File Edit View Options Help	1	
	I 🔽 Root 🕅 Model Library 🏶 Material Browser 🛛 🖓 🗖	Graphics
Root (root) Gobal Definitions Geometry Rectangle (r2) Rectangle (r2) Point (pt2) Point (pt3)	✓ Node Properties Name: 1µm type n new last.mph Path: E:\IBRAHIM\Si type N\New Folder\New Folder\1µm type n Program: COMSOL 4.3b (Build: 189) Tag: Model2 Author: Reset Author in Model Date created:	Time=0 Volume: Temperature (K) ▲ 293
Point (pt4) Rectangle (r4) Finalize (fin) P Inalize (f	Date modified: Jul 24, 2014 5:52:55 PM Modified by: License number: 1037460 Version: Comments: Transient Axisymmetric Heat Transfer This is a benchmark model for an axisymmetric transient thermal analysis. The temperature on the boundaries changes from 0 degrees C to 1000 degrees C at the start of the simulation. The temperature at 190 s from the analysis is compared with a NAEEMS benchmark solution	×165 ⁻⁶ 40
	Used Products COMSOL Multiphysics Heat Transfer Module Model Thumbnail	
	▼ Unit System SI ▼ Font	
	Family: default Size: 9 pt	y → z x Messages X → Progress III Log III Table 5
		COM50L 4.3.2.189

Geometry and meshes

> 3D model

Multilayer model including interfaciale resistance and porous media

9

	Ti	Si bulk	Si poreux		
Thickness	200 nm	50 µm	[0.2, 1, 10, 50]		
			μm		
k (W/m/K)	22	125	?		
ρCp (J.K-1.m-3)	2.5	1.5	?		
x 10 ⁶					
Maillage	5 à10 nm	Quelques µm	5 nm à quelques		
			μm		

Physics ?

> Heat Transfer in Solids module :

 $\rho \cdot C_p \, \frac{\partial T}{\partial t} = \nabla \cdot \left(k \nabla T \right)$

Heat Transfert in Porous Media :

$$\mathbf{\rho} \mathbf{C}_{\mathsf{p}} \mathbf{u} \cdot \nabla \mathbf{T} = \nabla \cdot (k_{\mathsf{eq}} \nabla \mathbf{T})$$

- $\times k_{eq} = \theta_p k_p + (1 \theta_p) k$
- Boundary conditions

10

13

800

600

400

0.01

d) 1 µm vs Rth

emperature (K)

(x = 8 W.m⁻¹.K⁻¹)

th=4.5 e-8.W⁻¹ m² K Rth=0.5 e-8 W th=2.5e-8 W⁻¹.m².k Experimental

Results, Experiments Vs Modelling

Parametric Sweep is employed to optimise the identification of each parameter. → Here examples for k identification 0.2, 1, and 10 μ m, and Rth for 1 μ m.

GREMI

Results summarizing

	Ti	Bulk	0.2µm	1µm	10µm	50µm			
k _p (W/m/K)	22	125 ± 17	20 ± 4	8 ± 2	3± 0.5	2±0.5			
ρCp(J.K ⁻¹ .m ⁻³)(x	$2.5{\pm}0.05$	1.5 ± 0.05	$\textbf{1.25}\pm\textbf{0.05}$	$\textbf{1.15} \pm \textbf{0.05}$	1.22 ± 0.05	1.25±0.05			
10 ⁶)									
R th(m².K/W)	-	$2 \times 10^{-8} \pm 2$	$1 x 10^{-8} \pm 2$	2.5x10 ⁻⁸ ±2	20x10 ⁻⁸ ±2	80x10 ⁻⁸ ±2			
T max(K)	//// /	590	700	727	740	752			
Tps relax(μs)	-	1.1	1.2	2.0	5	5			
Porous layer Sc-Si substrate Sample2 Sample3 Sample4 and 5									

Thermal properties vs etching depth (Submitted to J. Phys.D) 13

Conclusion

- New results are evidenced in this work for the <100> n-type porous Si based on Comsol[®] builder with more adapted physics.
- Comsol[®] program is able now to take into account the porosity (global one).
- Future effort will be done on the junction between local and global porosity.
- Also, the anisotropic thermal parameters are already in progress using a combination of PPT and TRR methods.

References

- [1] Seungjae Moon M L,Hatano M and Grigoropoulos C P 200; Thermal conductivity of amorphous silicon thin films Int. J. Heat . Mass Transfer 452439-47
- [2] Uma S,McConnell A,aseghi M,Kurabayashi Kand Goodson K 2001;Temperature dependent thermal conductivity of undoped polycrystalline silicon layers *Int. J thermophys.* 22605-16
- [3] Martan J, Semmar N, Leborgne C, Le Menn E and Mathias J 2005; Thermal properties characterization of conductive thin films and surfaces by pulsed lasers *Appl SurfSci 247 57-63*
- [4] Martan J, Semmar N, Leborgne C, Plantin P and Menn E L 2006 ;Thermal characterization of tungsten thin films by pulsed photothermal radiometry *Nanoscale and microscale thermophysical Engineering 10* 333-44
- [5]E Amin-Chalhoub, Semmar N,L Coudron,G Gautier, Leborgne C ;thermal conductivity measurement of porous silicon by the pulsed-photothermal method *J Phys* 443554011
- [6] Fauchet P M 1996 Photoluminescence and electroluminescence from porous silicon *J.Lumin* 70 294 309
- [7] Wong H,Filip V, Wong C and Chung P 2007 Silicon integrated photonics begins to revolutionize *Microelectron* reliab 47 1-10
- [8] Gautier G,Leduc P,Semai J and Ventura L 2008 Thick microporous silicon isolation layers for integrated rf inductors *Phys status solidi.c* 5 3667-70
- [9] Wang J,Jiang H B, Wang W C,and Zheng J B 1992 Efficient infrared up conversion luminescence in porous silicon *Phys rev Lett* 693252-5
- [10] Balageas D, Krapez J Cielo P 1986 Pulsed Photothermal modeling of layered materials
- J Aply Phys 59 34857
- [11] B.A Di Giovanni F.M MAhdi Particulate clusters in porous media
- [12]Larson K B and Koyama J Apply Phys 39 4408

Andreazza (CRMD/MEB)