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Abstract: In this paper, a COMSOL model is 

developed for type-II superconductors with 

Ginzburg-Landau (GL) parameter     : a ty-

pical value for modern high field-, high current 

superconductors. 

As a first step, the two-dimensional time-

dependent GL equations for low  -values are im-

plemented in COMSOL using an approach 

similar to that of Alstrøm et al
1
. While it doesn’t 

take much computational effort to reproduce 

results at    , the situation becomes more 

challenging at      (     , with   being 

related to the geometry size and   related to the 

mesh size). 

In order to overcome the complication, pe-

riodicity has been used: a periodic hexagonal 

unit cell of variable size is introduced, always 

containing a single flux quantum    (resulting in 

an ideal periodic Flux-Line Lattice, FLL, that is, 

an Abrikosov lattice). From this, magnetisation 

curves are computed and compared to those of 

Brandt. Excellent agreement is found over the 

whole range of external magnetic field values. 

Additionally, fundamental properties such as 

the value of the upper critical field and the struc-

ture of a vortex are reproduced and compared to 

analytical predictions. Excellent agreement is 

found on all these points, validating this model 

as a candidate for further research on pinning 

effects in type-II superconductors at     to   . 

Keywords: Type-II superconductor, Ginzburg-

Landau equations, vortex, flux line lattice, 

magnetic field, magnetisation. 

1. Introduction 

The two dimensional, time dependent Ginz-

burg-Landau (GL) equations for vortex dynamics 

in ideal type-II superconductors were solved 

using COMSOL with the approach of Alstrøm
1
. 

Using COMSOL’s built-in PDE interfaces, 

coupled magnetic vector potential A and order 

parameter   fields were solved on a two dimen-

sional finite domain subjected to external per-

pendicular magnetic field. 

After reproducing the results on vortex 

dynamics from [1] for GL parameter    , this 

approach showed significant drawbacks for 

values of      typical for practical type-II 

superconductors. Simulations were time con-

suming, unstable and mesh sensitive. 

The goal of this paper is to build a COMSOL 

model that correctly describes the behaviour of 

superconductors with   values around 50. This 

model is intended for later studies of pinning. 

2. Governing equations 

2.1 Time-dependent Ginzburg-Landau 

In Ginzburg-Landau theory, a superconduc-

tor is described by a complex order parameter  , 

where | |  indicates the fraction of electrons 

condensed into a superfluid. The time evolution 

of the order parameter   in the presence of mag-

netic field       is given by the GL equa-

tions (in SI units): 
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Here,   is Planck’s constant divided by   ,   is 

a phenomenological diffusion coefficient, 

     and    are the charge and mass of a 

Cooper pair respectively. Furthermore,   and   

are phenomenological parameters,   is the con-

ductivity of the material in its normal state,   is 

the electric potential and    is the permeability 

of free space. The equations (1) and (2) can be 

derived from the minimization of the free energy 

  of a superconductor with respect to   and   

respectively. 

Equation (2) assumes an externally applied 

uniform static field    perpendicular to the plane 
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in which   [     ]
 
 is solved for:    

 ̂   . Initially, a finite-sized superconductor is 

considered, subject to boundary conditions: 

(
 

 
      )     ,    on   , 

      ,    on   , 

(
  

  
   )     ,    on   , (3) 

2.2 Material parameters  ,   and   

Important material parameters that will be 

considered throughout this paper are the London 

penetration depth  , the Ginzburg-Landau cohe-

rence length     √   , and their ratio, the 

Ginzburg-Landau parameter      . 

The London penetration depth   charac-

terises the distance to which a magnetic field 

penetrates into a superconductor. In the ideal one 

dimensional case   is given by  ( )  
   

    , where   denotes the depth. Moreover, 

since a vortex has a self-sustaining normal 

conducting region inside a superconducting 

domain,   is related to the width of the magnetic 

field peak that is associated with the vortex. 

Furthermore, the Ginzburg-Landau coheren-

ce length   is related to the size of variations in 

| | and is considered the “size” of the vortex 

core (i.e. the radius of the non-superconducting 

region). The ratio between the two:  , denotes 

the size of the field peak with respect to the size 

of the vortex core. A high value is preferred 

since high   materials superconduct in higher 

external fields. 

 

Fig 1. Illustration of a vortex in a type-II supercon-

ductor with    . The black, red and blue curves 

show | |, | |, | | respectively, where         . 

The characteristic radii   and   are indicated with the 

arrows and dotted lines. 

2.2 Critical fields and field geometry 

When     , the ground state of the super-

conductor is the Meissner state, with | |    and 

    in the whole domain. As    increases, at 

a certain point vortices become energetically 

favourable. This gives the first critical field: 

   ( )  (     ( ))     
 ⁄  (4) 

with        the flux quantum and  ( ) a 

non-trivial fit containing several parameters
2
. At 

    ( )         . 

As    increases further, vortices penetrate 

the bulk of superconductor. Each vortex carries 

one flux quantum   . 

As long as the distance between the vortices 

is large compared to  , the vortices show little 

interaction and are “isolated vortices”. For     

and    , (see fig. 1) the magnetic field shape 

and current density of these vortices are: 

  (   )    (   )     
 ⁄  (5) 

  (   )    (   )       
 ⁄ , (6) 

where    and    are components of   and   (see 

fig. 1) and   ,    are modified Bessel functions 

of the second kind. 

When the distance between vortices becomes 

smaller, they form a flux-line lattice (FLL), also 

known as Abrikosov lattice. As    increases, 

more vortices enter and the lattice becomes more 

compressed. At a certain point, the cores of 

vortices overlap and no superconducting path is 

left for a transport current. At this point, the 

second critical field is reached: 

         
 ⁄  (7) 

and the size of the Abrikosov unit cell is:     . 

2.3 Virial theorem and magnetisation 

During the process described above, the 

average magnetic field inside the supercon-

ductor, 〈 〉  ∫       ∫     , lags behind 

the |  |. The resulting magnetisation   is: 

 (   )  (〈 〉    )    (8) 

As |  | goes to    , | | goes to zero. 

  

𝜆 𝜉 
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The dependence of   on    in ideal type-II 

superconductor was studied by Brandt and the 

resulting expression (for    ) is: 

   
 

   
  (  

   

 
  ( )), 

  ( )                     
  (9) 

with scaled magnetization:      | |     and 

applied field   |  |    . 

For a finite-sized superconductor, the applied 

field    can be easily introduced in the boundary 

conditions. However, the ideal type-II supercon-

ductor is infinite and    has no meaning. 

Instead,    and 〈 〉 are linked by the virial 

theorem
2
: 

|  |   ⁄  〈| |  | |     〉 〈  〉⁄ , (10) 

where 〈 〉 denotes the spatial average over the 

domain. 

2.4 Normalization and Gauge Invariance 

The COMSOL implementation follows that 

of Alstrøm et al. This gives the following 

dimensionless Ginzburg-Landau equations: 
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With the boundary conditions: 

      ,    on   , 

      ,    on   , 

     ,    on   , (13) 

Critical fields: 

   ( )  (     ( ))   ⁄  (14) 

   ( )    (15) 

Or alternatively, with         and      : 

         
 ⁄  (16) 

Note that with the new definitions for    and  , 

the expressions 16 and 7 are identical. 

Furthermore, eqs. 5, 6, 8, 10 become: 

  ( )    ( )   (17) 

  ( )    ( )   (18) 

 (   )  〈 〉     (19) 

|  |  〈| |
  | |     〉 〈  〉⁄  (20) 

3. Method 

3.1 Initial implementation 

The initial implementation is identical to the 

one discussed in appendix A of Alstrøm et al
1
., 

with the exception that no additional auxiliary 

variable is introduced. Instead, the boundary 

condition       is directly applied, using a 

“pointwise constraint” (one of the available 

boundary conditions in COMSOL’s built-in PDE 

interfaces). The other boundary conditions, 

namely        and       , are 

automatically applied by means of the default 

zero flux condition:       . At    , this 

model reproduces the general vortex dynamics
1
.  

However, as       increases, the situation 

changes. Since   is related to our model’s finest 

features (the | |     | |    regions in the | |-
field, coloured blue in fig. 3), the mesh is defined 

in terms of  . Also, since   is related to the size 

of the border effects and the distance between 

vortices (and therefore the size of the overall 

structure), the domain size is defined in terms of 

 . As a consequence, higher   requires larger 

domain with respect to the mesh size and 

therefore, a large number of degrees of freedom 

(DOF). As a result, at higher k it becomes 

unpractical to compute magnetisation curves 

with this approach. 

3.2 Use of periodicity 

In order to overcome this problem, we use a 

hexagonal geometry for a unit cell. The border 

effects are removed by replacing the external 

boundary conditions (as defined by Alstrøm et 

al
1
), by periodicity conditions: 

                     (21) 
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Fig. 2 Hexagonal unit cell with periodicity on all sides 

and pinhole in the centre. 

This implies the assumption of an infinite 

periodic vortex lattice (the Abrikosov lattice), 

with our domain being the unit cell. 

3.3 Pinhole approach 

Since external boundaries are absent in this 

model, a vortex enters from within the unit cell, 

through a pinhole of radius         placed at 

the cell centre, fig. 2. In this approach, the field 

near the external boundary condition (at the 

pinhole border) cannot be considered as the 

external field    anymore. Given one flux 

quantum    is in the cell, it is equal to the vortex 

central field    that is related to    through the 

virial theorem, eq. 20. 

Numerous benchmarks show validity of this 

approach. 

In particular, using multiple, connected unit 

cells (one of them containing a pinhole), the 

pinned vortex has been compared to free vortices 

(vortices that contain no pinhole). Excellent 

agreement has been found for | | and  , for 

large unit cells as well as for closely packed 

vortex lattices. 

3.4 Magnetisation curve 

In order to produce a magnetisation curve for 

        |  |     , the model includes an 

iterative process that reduces the unit cell size 

(and therefore the lattice constant) as    in-

creases so that the cell contains one flux 

quantum. 

For each cell size, the vortex central field    

is ramped up by means of the pinhole border 

condition       , until one flux quantum is 

present. Using eqs. 19, 20, the resulting field B 

the magnetisation   are computed. This process 

 

 

Fig. 3 Computed | |-field at     (small insert, 

       ) and      (large section,       
     ). As higher   implies larger  , border effects are 

more pronounced at higher  . Note: the images are 

scaled in terms of  . In terms of  , the large section is 

in fact, smaller. Both images are taken at       . 

is repeated until |  |      (at which the unit 

cell area is       ). At the end of the 

computation process, the collected values for   

and    give a magnetisation curve. Taking 

proper normalisation into account (to com-

pensate for coordinate transformations and use of 

different unit systems), these curves can be 

compared to eq. 9. 

4. Results 

4.1 Initial implementation 

The initial implementation from Alstrøm et 

al
1
 resulted in models that can reproduce general 

vortex dynamics, vortex lattices and an early 

version of a magnetisation curve. 

Basic geometry shapes such as rectangles, 

squares and circles are tested (see also fig. 3), as 

well as periodicity conditions. As mentioned in 

section 3, the models give agree well at    , 

but for higher   values the number of degrees of 

freedom is problematic. 

4.2 Hexagonal unit cell 

When using a hexagonal unit cell (fig. 2) 

with periodic conditions at the boundaries, a 

vortex is excited using a pinhole. For unit cells 

with radius        and above, the vortex can 

be seen as isolated, since the scaled magnetic 

field distribution around the pinhole is 

independent on the unit cell size. 
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Fig. 4 Computed | |-field of an isolated vortex in a 

periodic hexagonal domain at     . For clarity, the 

size of the vortex relative to the unit cell has been 

greatly exaggerated. In practice, the unit cell radius 

     . 

A comparison of the computed   ( ) and 

  ( ) curves to the theory (see eqs. 17, 18, valid 

for     and    ), as well as to the graphs in 

figs. 4-6 from Brandt
2
 show their reasonable 

agreement (see figs. 5a and b). 

 

 

Fig. 5a (top) Comparison between the    |   | 
from the model (blue solid line) and the theory, eq. 17 

(red dashed line). For    , the model converges to 

the vortex central field:      . In the centre, the 

model gives          (as it should), while the 

theoretical curve loses validity and goes to infinity. 

Fig. 5b (bottom) Comparison between the    
|   | from the model (blue solid line) and the 

theory, eq. 18(red dashed line). For    , the model 

converges to zero (as it should), while the theoretical 

curve incorrectly goes to infinity. 

4.3 Magnetisation 

 

Fig. 6 Evolution of the vortex | |-field and of the unit 

cell size as Ba increases (from left to right): as|  | and 
|  |approach    , the unit cell size approaches 

      , and | | goes to zero in the whole domain. 

The computed magnetisation curve is com-

pared to that of Brandt, eq. 9. The results are in 

perfect agreement, see example in fig. 7. 

 

Fig. 7 Magnetisation curve M(Ba) of ideal type II 

superconductor at k=50 retrieved from2  (red line) and 

computed using our model (blue dots). 

5. Conclusions 

 The COMSOL model of a superconductor 

from Alstrøm et al
1
 shows correct behaviour 

at    . For     , the implementation 

becomes challenging because of the large 

number of degrees of freedom required. 

 The problem can be solved by using 

periodicity conditions and a unit cell with 

variable size. Model using this approach, 

correctly reproduce vortex structure and     

for     . 
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 Computed magnetization of ideal type-II 

superconductor at      is in perfect 

agreement with the theory of Brandt. 

 A new COMSOL model of type II super-

conductor is created and will be used to 

study effect of pinning in type-II supercon-

ductors at high values of  . 
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