Study of Effect on Resonance Frequency of Piezoelectric Unimorph Cantilever for Energy Harvesting

G. Ravi Prakash, K. M. Vinayaka Swamy, S. Huddar, B. G. Sheeparamatti

Department of Electronics and Communication Engineering Basaveshwara Engineering College, Bagalkot, Karnataka, India.

• 1

- Introduction
- Piezoelectric Effect
- Piezoelectric Cantilever
- Theoretical analysis using Matlab Simulink
- Modeling using COMSOL
- Conclusion
- References

Introduction

- At an average existing mobile Li Batteries has shelf life of 3-4 days.
- To investigate renewable power "scavenging" technologies.
- Piezoelectric materials can provide a direct transduction mechanism to convert signals from mechanical to electrical domains and vice versa.
- Piezoelectric materials are high energy density materials that are suitable for miniaturization. Therefore, this has led to a growing interest in piezoelectric thin films for MEMS applications.

Piezoelectric Effect

- Appearance of an electric potential across certain faces of a crystal when it is subjected to mechanical pressure
- The word originates from the greek word "piezein", which means "to press"
- Discovered in 1880 by Pierre Curie in quartz crystals.
- Conversely, when an electric field is applied to one of the faces of the crystal it undergoes mechanical distortion.
- Examples --- Quartz, Barium titanate, tourmaline

Electric dipoles in Weiss domains; (1) unpoled ferroelectric ceramic, (2) during and (3) after poling (piezoelectric ceramic)

Piezoelectric Effect

- displacement of electrical charge due to the deflection of the lattice in a naturally piezoelectric quartz crystal
- The larger circles represent silicon atoms, while the smaller ones represent oxygen.

Why Piezoelectric in MEMS

- Suitable for vibrational energy Harvesting
- Compatible with Microfabrication
- Voltages of 2-10V are obtained
- High energy density
- No separate external energy source needed
- Low maintenance
- Good efficiency

Piezoelectric Conversion

Piezoelectric Cantilever

Piezoelectric

Strain in piezoelectric material causes a charge separation

Design and Modeling Considerations

- Good quality material
- Low resistance
- Thermal management
- Higher power and frequency of operation

Theoretical Analysis

Piezoelectric Unimorph Cantilevers

Figure :The schematic of a PUC with the NPL/PL length ratio (a) >1, (b) =1and (c) <1, and the corresponding induced voltage distribution ((d), (e) and (f)) in the piezoelectric layer with a concentrated force, F, applied at the tip. Note that in (a)-(c), the dashed lines in Section-1 and Section-2 indicate the positions of the strain neutral plane.

Piezoelectric materials are characterized by several coefficients:

Resonant frequency (f_r)

$$f_r = \frac{\omega}{2\pi} = \frac{1}{2\pi} \sqrt{\frac{K}{m_e}}$$
(10)

Expressed in terms of Bending modulus per unit width Dp

$$f_{n} = \frac{v_{n}^{2}}{2\pi} \frac{1}{l^{2}} \sqrt{\frac{D_{p}}{m}}$$
(11)

$$m = \rho_p t_p + \rho_s t_s \tag{12}$$

$$D = \frac{E_p^2 t_p^4 + E_s^2 t_s^4 + 2E_p E_s t_p t_s (2t_p^2 + 2t_s^2 + 3t_p t_s)}{12(E_p t_p + E_s t_s)}$$
(13)

The induced voltage unit force $V_{in,ave/F}$ is given by

$$\frac{V_{in.ave}}{F} = \frac{1}{2} Lg_{31} \frac{E_p}{wD_1} \left(t_{n1}t_p + \frac{1}{2}t_p^2 \right)$$
(14)
$$K = \frac{2wD}{I^3}$$
(15)

The induced voltage per tip displacement $V_{in,ave/htip}$ is given by

$$\frac{V_{in.ave}}{h_{tip}} = \frac{3}{4} \frac{g_{31}E_s t_s E_p t_p (t_s + t_p)}{L^2 (E_s t_s + E_p t_p)}$$
(16)

Material properties of piezoelectric unimorph cantilever

Inputs to the model	ZnO	Pt		
Length(µm)	2500	2500		
Width(µm)	500	500		
thickness(µm)	2	4		
Young's modulus[GPa]	123-210	168		
Poisson's ratio		0.38		
Strain Coefficient(10 ⁻¹² m/v)	-5.4 - 11.67			
Density(Kg/m ³)	3980	21450		
Dielctric Constant(ε_r)	9-12.64			

Table :Material properties of piezoelectric unimorph cantilever

Simulink Model

Figure. Simulink model of piezoelectric unimorph cantilever

Simulation using COMSOL Multiphysics

Use of COMSOL Multiphysics

Application modes:

piezoelectric: Mechanical / Electrical behavior

- Generated charge / Electrical potential
- Vertical vibrations application

Moving Mesh: Varying Length

Geometry

Subdomain and Boundary settings

• Subdomain

ubdomains Groups	Damping	Initial Stress and	Strain	Init	Element Co	plor
ubdomain selection	Structural	Electrical	Constrai	nt	Load / Charge	
1	Structural settings					
<u>.</u>	Library material: Z	inc Oxide		•	Load	
	Material model:	Piezoelectric	•			
	Constitutive form:	Strain-charge form	n 👻			
	Coordinate system:	Global coordinate	system 👻			
	Quantity	Value/Expressio	n Unit De	scriptio	n	
	^s E	Edit	1/Pa Cor	npliance	matrix	
	d	Edit	C/N Cou	upling ma	trix	
Select by group	۴rT	Edit	Rel	ative per	mittivity	
	ρ	5680[kg/m^3]	kg/m ³ Der	nsity		
Active in this domain						

Subdomains Groups	Damping	Initial Stress and Strain		Init	Element Colo		
Subdomain selection	Structural	Electrical Constraint Loa			Load / Charge		
1	Load charge settings						
2	Coordinate system:	Global coordinate sy	ystem 👻				
	Quantity	Value/Expression	Unit	Descripti	on		
	Fx	0	N/m ³	Body load	(force/volume) X-dir.		
	FY	0	N/m ³	Body load	(force/volume) Y-dir.		
	Fz	a*rho_smpz3d	N/m ³	Body load	(force/volume) Z-dir.		
	Ρ _v	0	C/m ³	Space char	ge density		
-							
Group: 🚽							
Select by group							
Bolocc by group							
Active in this domain							

Zero charge

- Mechanical boundary conditions Floating potential

 fixed end
 Fixed

 Electric boundary conditions(piezo layer)
 - - Free end: grounded
 - fixed end: floating potential
 - other surfaces: zero charge

Ground

Governing equations

• Piezoelectric Equations in strain-charge form

 $S = s^{E}T + dE$ $D = \varepsilon^{T}E + dT$

S = mechanical strain T = mechanical stress [N/m²] s^E = elastic compliance [Pa⁻¹] d = piezoelectric coefficient [C/N] D = electric displacement [C/m²] E = electric field [V/m] $\varepsilon^T = dielectric permittivity [F/m]$

$\rho = 5680 Kg / m^3$

Meshing

Mapped mesh Parameter

Simulation Results

Eigen Frequency Analysis

Figure .Model frequency of piezoelectric unimorph cantilever.

Stationary Analysis

Figgure. Tip displacement due to applied Acceleration

Frequency Analysis

Figure : Frequency Response of d33

Time dependent Analysis

Harmonic vibration of 50 N/m2 amplitude with frequency from 450Hz to 510Hz is applied on the top surface of beam, so as to produce vibration. The resonant frequency for both d_{31} and d_{33} structure is 585 Hz

Force per unit area is taken as 50 *N/m*2 which is equivalent to a proof mass of 0.145 mg deposited on tip of cantilever at $9.81m/s^2$ acceleration.

Damping

Rayleigh damping for transient analysis

$$\begin{bmatrix} \frac{1}{2\omega_{1}} & \frac{\omega_{1}}{2} \\ \frac{1}{2\omega_{2}} & \frac{\omega_{2}}{2} \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \zeta_{1} \\ \zeta_{2} \end{bmatrix} \qquad \zeta_{1} = \zeta_{2} = 0.1$$

$$\omega_{1} = 450$$

$$\omega_{2} = 510$$

Subdomains Groups Structural E

bdomain selection Damping Damping settings Library material: Material: Quantity Structural dampi adM BdK Coupling loss:	Initial Stress ar s : Zinc Oxide Piezoelectric, stra Value/Express ing: Rayleigh 49.5 1.98e-4	ain-charge	Init Load Description Mass damping	Element	Color
Damping settings Library material: Material: Quantity Structural dampi a _{dM} β _{dK} Counting locs:	s Zinc Oxide Piezoelectric, stra Value/Express ing: Rayleigh 49.5 1.98e-4	ain-charge	Load Description Mass damping	parameter	
Coupling loss		-	Stiffness dam	ping parameter	
up: Dielectric loss: Select by group Active in this domain	No loss No loss	•			

X

Output of Transient Analysis

Fig. . Frequency Response of *d*31 mode

Fig. . Frequency Response of d33 mode

Figure: Extrusion plot showing total displacement of d_{33}

Parametric Segregated Analysis Output

Figure: Plot of total displacement vs length in d31

Figure: Plot of total displacement vs length in d33

Figure : Extrusion plot for maximum voltage.

Min: 1.019e-12

Figure: Extrusion plot for maximum displacement.

• 33

Figure of Merit

Ref	Device	Dimension	V _{peak}	F(Hz)	Acceleration	V/mm ³	FOM
					g		V/mm ³ .g
[6]	<i>d</i> 31 PZT	2mm X 0.6mm X 1.64µm	0.45	608	1	228.7	228.7
[7]	<i>d</i> 31 PZT	2mmX3.2mmX1.39µm	16	60	0.79	112.4	142.3
[8]	<i>d</i> 31 ZnO	27mm x .3mm x 0.2mm.	4.7×10-9	10	0.1	2.9×10-4	.9×10 ⁻⁹
[9]	<i>d</i> 33 PZT	0.8mmX1mmX10 <i>µ</i> m	2.2	528	0.39	275	705
[10]	<i>d</i> 33 PZT	0.8mmX1.2mmX2 <i>µ</i> m	1.6	870	2	833.3	416.6
Proposed	<i>d</i> 31 ZnO	2.5mm x .5mm x 2μm.	1.05	485	1	420	420
Proposed	<i>d</i> 33 ZnO	2.5mm x .5mm x 2µm	4.2	485	1	1680	1680

Table . Performance Comparison reported MEMS Harvesters

Conclusion

- The work presents the study of piezoelectric cantilevers with engineered extensions to effectively convert ambient vibrations into electricity.
- Piezoelectric converters appear to be the most attractive for Microscale devices with a maximum demonstrated power density.
- Vibration powered systems are being actively pursued and will be up and running shortly.

Acknowledgement

- NPMASS(National program on micro and smart systems) of Govt of India and IISC Bangalore.
- Suyog N Jagtap for helpful suggestions in carry out this simulation work .

References

- S Roundy and P KWright "A Piezoelectric Vibration Based Generator for Wireless Electronics" Institute Of Physics Publishing ,Smart Mater. Struct. 13 (2004) 1131–1142
- [2] M. Guizzetti, V. Ferrari1, D. Marioli and T. Zawada "Thickness Optimization of a Piezoelectric Converter for EnergyHarvesting" Excerpt from the Proceedings of the COMSOL Conference 2009 Milan
- [3] Suyog N Jagtap and Roy Paily "Geometry Optimization of a MEMS-based Energy Harvesting Device" Proceeding of the 2011 IEEE Students' Technology Symposium 14-16 January, 2011, IIT Kharagpur.
- [4] Ying Zhangand Wei He "Multi-mode Piezoelectric Energy Harvesters for Wireless Sensor Network Based Structural Health Monitoring". School of Electrical and Computer Engineering, Georgia Institute of Technology
- [5] XiaotongGao "Vibration and Flow Energy Harvesting using Piezoelectric" A Thesis submitted to the Faculty of Drexel University
- [6] Hua Bin Fanga, Jing Quan Liua, Zheng Yi Xub, Lu Donga, Li Wangb, Di Chena, Bing-Chu Caia, Yue Liub, "Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting," *Microelectronics Journal*, vol. 37, pp. 1280 – 1284, July 2006.
- [7] Wen G. Li, Siyuan He and Shudong Yu, "Improving power density of a cantilever piezoelectric power harvester through a curved L-shaped proof mass," *IEEE Transactions On Industrial Electronics*, vol. 57, pp. 868 – 876, March 2010.
- [8] M. Guizzetti, V. Ferrari, D. Marioli and T. Zawada, "Thickness optimization of a piezoelectric converter for energy harvesting,"

- [9] J.C. Park, D. H. Lee, J. Y. Park, Y. S. Chang and Y. P. Lee, "High performance piezoelectric MEMS energy harvester based on D33 mode of PZT thin film on buffer-layer with *PbTiO3* inter-layer," *IEEE Solid- State Sensors, Actuators and Microsystems Conference*, pp. 517 – 520, June 2009.
- [10] P. Muralta, M. Marzenckib, B. Belgacema, F. Calamea and S. Basrourb, "Vibration energy harvesting with PZT micro device," *Elsevier Proceedings of the Eurosensors XXIII conference*, pp. 1194–1196, 2009.
- [11] Chang Liu "Foundation of MEMS".
- [12] N. T. Adelman, Y. Stavsky, and E. Segal, "Axisymmetric vibrations of radially polarized piezoelectric ceramic cylinders," J. Sound Vibrat., vol. 38, no. 2, pp. 245–254, 1975.
- [13] N. T. Adelman and Y. Stavsky, "Vibrations of radially polarized composite piezoceramic cylinders and disks," J. Sound Vibrat., vol. 43, no. 1, pp. 37–44, 1975.
- [14] C. F. Lu, J. S. Yang, J. Wang, and W. Q. Chen, "Power transmission through a hollow cylinder by acoustic waves and piezoelectric transducers with radial polarization," J. Sound Vibrat., vol. 325, no. 4–5, pp. 989–999, 2009.
- [15] W. Q. Chen, C. F. Lu, J. S. Yang, and J. Wang, "A circular cylindrical, radially polarized ceramic shell piezoelectric transformer," *IEEE Trans. Ultrason. Ferroelectr. Freq. Control*, vol. 56, no. 6, pp. 1238–1245, 2009.
- [16] D. M. Sun, S. Wang, S. Hata, and A. Shimokohbe, "Axial vibration characteristics of a cylindrical, radially polarized piezoelectric transducer with different electrode patterns," *Ultrasonics*, vol. 50, no. 3, pp. 403–410, 2010.

Thank you.