Study of Effect on Resonance Frequency of Piezoelectric
Unimorph Cantilever for Energy Harvesting

G. Ravi Prakash, K. M. Vinayaka Swamy, S. Huddar, B. G. Sheeparamatti

Department of Electronics and Communication Engineering
Basaveshwara Engineering College, Bagalkot, Karnataka, India.

o Excerpt from the Proceedings of the 2012 COMSOL Conference in Bangalore o]


http://www.comsol.com/conference2012/india/

Overview

Introduction
Piezoelectric Effect
Piezoelectric Cantilever

Theoretical analysis using Matlab Simulink
Modeling using COMSOL

Conclusion

References

L Wi



Introduction

At an average existing mobile Li Batteries has shelf life of 3-4
days.

To investigate renewable power “scavenging” technologies.

Piezoelectric materials can provide a direct transduction
mechanism to convert signals from mechanical to electrical
domains and vice versa.

Piezoelectric materials are high energy density materials that are
suitable for miniaturization. Therefore, this has led to a growing
Interest in piezoelectric thin films for MEMS applications.
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Piezoelectric Effect

Appearance of an electric potential across certain faces of a

crystal when it Is subjected to mechanical pressure

The word originates from the greek word “piezein”, which

means ““to press”
Discovered in 1880 by Pierre Curie in quartz crystals.

Conversely, when an electric field is applied to one of the

faces of the crystal it undergoes mechanical distortion.

Examples --- Quartz, Barium titanate, tourmaline
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Why Piezoelectric in MEMS

Suitable for vibrational energy Harvesting
Compatible with Microfabrication
\oltages of 2-10V are obtained

High energy density

No separate external energy source needed

L ow maintenance
Good efficiency
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Piezoelectric Conversion

33 Mode

31 Mode
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Piezoelectric Cantilever

Plezoelectric

Strain in piezoelectric material causes a charge separation

Piezoelectric generator

iVs

peon
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Design and Modeling Considerations

Good quality material

Low resistance

Thermal management

Higher power and frequency of operation



Theoretical Analysis
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Piezoelectric Unimorph Cantilevers
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Figure :The schematic of a PUC with the NPL/PL length ratio (a) >1, (b) =land (c) <1, and the

corresponding induced voltage distribution ((d), (e) and (f)) in the piezoelectric layer with a concentrated
force, F, applied at the tip. Note that in (a)-(c), the dashed lines in Section-1 and Section-2 indicate the

positions of the strain neutral plane.
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Piezoelectric materials are characterized by several coefficients:

Ig 5 All sramns m the material are constant or

i mechanical deformation is blocked in any

| Electrodes are perpendicular to 3 axes.

Relative dielectric constant

K I All stresses on matenal are constant or no external

1 forees.
‘ I_Electr:dea are perpendicular to 1 axis.

Felative dielectric constant.

k | Stress or strain 15 equal in all directions perpendicular

Stress or strain is in shear from around 2 axis.

I;L
Electrodes are perpendicular to 1 axis.
Electromechameal coupling factor.

P to 3 axis
I_ Electromechanical conpling factor
d Hydrostatic sfress or stress is applied equally in all
h directions. Electrodes are perpendicular to 3 axis

Piezoelectric charge coefficient.

d | Applied stress, or piezoelectrically induces strain 15

3 n 3 direction.
L Electrodes are perpendicular to 3 axis.

Piezoelectric charge coefficient.

[ Applied stress, or the piezoelectrically induced strain in
1S5  shear form around 2 axis.

Electrodes are perpendicular to 1 axis.
Piezoeleciric voltage coefficient.

I_ Applied stress, or the piezoelectrically induced

El sirain 15 m the 1 direction

i =

Electrodes are perpendicular to 3 axis.
Piezoelectnic voltage coefficient.

+ F— Compliance 1z measured with clozed circuit.
k. S'ﬁ
Il: Stress or strain 1s shear around 3 direction.
Strain or stress isin 3 direction
Elastic compliance.

D — Compliance is measured with open circuit.
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Resonant frequency (f,)

f_o 1 |K
" 27 2zm\m,

Expressed in terms of Bending modulus per unit width Dp
2
f — Vn 1 DP
o2 |? \l m

m=p,t, + ol

244 244 2 2
e Et)+Et +2E Ett (2t) +2t7 +3t t,)
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The induced voltage unit force Vi, ,.er IS given by
V. 1 E 1
inave _ — | p t t _I__t2 (14)
F 2 g“le(“lp 2 p)
2wD (15)
K = E

The induced voltage per tip displacement Vi, ;e nip IS given by

Vin.ave - § g31EStSEptp (tS +tp)

I 2
htiID 4 L°(Et, + Eptp)
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Material properties of piezoelectric unimorph cantilever

Table :Material properties of piezoelectric unimorph cantilever

Inputs to the model Zn0O Pt
Length(um) 2500 2500
Width(pum) 500 500

thickness(um) 2 4
Young’s modulus[GPa] 123-210 168
Poisson’s ratio -- 0.38
Strain Coefficient(10-12m/v) -5.4-11.67 --
Density(Kg/m3) 3980 21450
Dielctric Constant(g,) 9-12.64 --
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Simulink Model
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Figure. Simulink model of piezoelectric unimorph cantilever
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Simulation using COMSOL Multiphysics
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Use of COMSOL Multiphysics

» Application modes:
piezoelectric: Mechanical / Electrical behavior
 Generated charge / Electrical potential

« Vertical vibrations application
Moving Mesh: Varying Length
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Geometry

Piezo Layer
« 3D cantilever T

e

— lenght L = 2500um,;
— width w = 500 pm;

— piezoelectric layer thickness t,,o = 2 pm.
—Substrate layer t., =4 pm.

Platinum Cantilever




Subdomain

Subdomain Settings - Piezo Sclid (smpz3d)

C )

Subdomains

Subdomain selection

1 -

Group:
[ Select by group
Active in this domain

| Init | Element |

i Initial Stress and Strain
Structural Electrical |

Conskraint |

Load | Charge

Structural settings
Library material: | Zinc Dxide

Material model:

Constitutive Form:

Quantity

Piezoelectric

.Strain-:harga Farm - |

Sla

Coordinate system: | global coordinate system

Value/Expression Unit Description

s 1/Pa Compliance matrix
d C/N Coupling matrix
4

[ 5680[kg/m~3]

Relative permittivity

kgjm? Density

H Cancel H Apply H Help

Subdomain and Boundary settings

Subdomain Settings - Piezo Solid (smpz3d)

et

Subdomains | Groups

Subdamain selection

1 -

Group:
[] select by group
Active in this domain

| it | Element |

Damping I Initial Stress and Strain
Structural I Electrical | Canstraint |

Load | Charge

Load charge settings

Coordinate system: :Global coordinate system -

Quantity Value,/Expression Unit

Fy o Nfm®
Fy o Nfm®
F; a*rho_smpz3d Mfm?
Py 0 cjm?

Description

Bady load (Force/valume) X-dir.
Body load (Force/vaolume) Y-dir.
Body load (Forcevolume) Z-dir.

Space charge density

ok |

Cancel ][ Apply ][ Help

Mechanical boundary conditions Floating potential
— fixed end

— Free end: grounded
— fixed end: floating potential
— other surfaces: zero charge

N

_ N _ Fixed—
Electric boundary conditions(piezo layer)

/7

Zero charge

Ground
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Governing equations

» Piezoelectric Equations in strain-charge form

S =sFT +dE

D= E+dT

S = mechanical strain

T = mechanical stress [N/m?]

sE = elastic compliance [Pa!]

d = piezoelectric coefficient [C/N]
D = electric displacement [C/m?]
E = electric field [V/m]

' = dielectric permittivity [F/ m]

o =5680Kg / m®
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Meshing

* Mapped mesh Parameter
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Simulation Results

Eigen Frequency Analysis

f,=485HZ

f.= 14.12 kHz
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g

Figure .Model frequency of piezoelectric unimorph cantilever.
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Stationary Analysis

Subdamain: Tokal displacement [m] Boundary: Electric patential [V] Deformation: Displacement

Ll [Il} 3
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Figgure. Tip displacement due to applied Acceleration
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Freguency Analysis

Electric Potential [V]
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Figure Frequency Response of d31
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Figure : Frequency Response of d33
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Time dependent Analysis

Piezo Layer
/ : E;mf »Harmonic vibration of 50 N/m2 amplitude with frequency
! wlass . .
/#4@7 from 450Hz to 510Hz is applied on the top surface of
beam, so as to produce vibration. The resonant frequency
for both &, and &, structure is 585 Hz
»Force per unit area is taken as 50 N/m2 which is
equivalent to a proof mass of 0.145 mg deposited on tip of
cantilever at 9.81m/s? acceleration.
S — N o
:m siia
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Damping

Rayleigh damping for transient analysis
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Subdomain Settings - Piezo Selid (smpz3d)

|23

Subdomains | Skructural | Electrical | Canskraink | Load | Charge
Subdlomain seleckion Damping | Initial Stress and Strain | it | Element |
1 " Damping sektings
Library material: Zinc Oxide -
Material; Piezoelectric, strain-charge
Quantity Value/Expression Unit Description
Structural damping: | R ayleigh -
Oipa 49.5 1S mass damping parameter
BdK 1.98=-4 5 Stiffness damping parameter
Coupling loss: [ Mo loss -
Group: . . -
Dielectric loss: Mo loss -
[ select by graup : :
Active in this domain
QK ] [ Cancel ] [ Apply ] [ Help ]
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Output of Transient Analysis
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Electric potential [V] Max: 4,207

N

Figure: Extrusion plot showing total displacement of d,,
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Parametric Segregated Analysis Output

Electric Potential[V]

-0.5 0 0.5 1
Length

1.5 2 2.5

Figure: Plot of total displacement vs length in d31

Total displacement [m]

Length x1073

Figure: Plot of total displacement vs length in d33
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Electric potential [V] Max: 2.289%e-3

x107°

2

=D

-6

=7

0 -8

Figure : Extrusion plot for maximum voltage.

Total displacement [m] Max: 6.874e-6

x10°

B

N

Min: 1.019e-12

Figure: Extrusion plot for maximum displacement. 032



Length( 1)=-4e-4
Subdom an: Electric potential [V] Deformation: Displacement amp

® 1e-5

Max: 2.289% -3
©10-3

-

Min: -8.232e-3

®33



Figure of Merit

Table . Performance Comparison reported MEMS Harvesters

Ref Device Dimension Ve | F(HZ) | Acceleration | V/mm3 FOM
g V/imm3 g
[6] 431 PZT | 2mm X 0.6mm X 1.64um | 0.45 608 1 228.7 228.7
[7] d31 PZT | 2mmX3.2mmX1.39m 16 60 0.79 112.4 142.3
[8] @31Zn0O | 27mm x .3mm x 0.2mm. | 4.7x10°| 10 0.1 2.9x104 | .9x10°
[9] 433 PZT | 0.8mmX1mmX10xm 2.2 528 0.39 275 705
[10] 433 PZT | 0.8mmX1.2mmX24m 1.6 870 2 833.3 416.6
Proposed | 31 ZnO | 2.5mm x.5mm x 2um. 1.05 485 1 420 420
Proposed | &33ZnO | 2.5mm x.5mm x 2m 4.2 485 1 1680 1680
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Conclusion

« The work presents the study of piezoelectric cantilevers with
engineered extensions to effectively convert ambient vibrations

Into electricity.

» Pilezoelectric converters appear to be the most attractive for Micro-

scale devices with a maximum demonstrated power density.

 Vibration powered systems are being actively pursued and will be

up and running shortly.
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