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1. Introduction
 

transmission systems two important trends 
influencing the engineering efforts are: (i) The 
steadily increasing voltage levels introduced to 
reduce resistive losses and (ii) Compacting, i.e. 
trying
possible. From an insulation point of view, 
however, these two requirements are conflicting 
in the sense that making clearance distances 
between conductors at different voltage levels 
smaller, while at the same time also 
these voltage differences, obviously makes the 
occurrence of electric discharges and flashovers
see Fig. 1,
happen clearly requires a very thorough design 
work; critical areas suffering from excessive 
stress must
design modifications. Doing this by experiments 
is very time
numerical simulations of the electric field 
distribution provide a highly useful tool.
Unfortunately, 
to translate the result from an 
into a statement whether a discharge or flashover 
will occur or not. 

a discharge is the ionization of the insulating gas
[1]
ionization 
of free charges (electrons) in gas. It is equal to 
the ionization rate minus the recombination and 
attachment rates. 
strongly dependent on the electric field

depending on the gas. 
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. An important quantity 
ionization 
of free charges (electrons) in gas. It is equal to 
the ionization rate minus the recombination and 
attachment rates. 
strongly dependent on the electric field

(E) and the shape of this function varies 
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fulfilled 
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Very long discharges created with a 
high voltage test equipment

Obviously, a necessary condition for 
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lead to a macroscopically detectable discharge. 
For this to happen an electron avalanche must be 

d, i.e. each primary electron
the electric field causes 
increasing rate. A self
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electrodes, will form provided the total number 
of electrons becomes larger than some critical 

If we further assume that such an 
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