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1. Helicoid to Ribbon

1.1 Formation of twisted ribbons consisting of bilayers of gemini surfactants
(two surfactant molecules covalently linked at their charged head groups;
here 16-2-16 tartrate at 0.1% in water; horizontal span ~ 10 um).

R. Oda, I. Huc, M. Schmutz, S.J. Candau, F.C. MacKintosh.
Tuning bilayer twist using chiral counterions. NATURE, vol. 399, 1999.
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1.2 Tt is observed a smooth transition from platelet to helix to ribbon (tubule in
the picture)

Tubule Helix A Platelet Helix B

1.3 How does the shape of the twisted ribbons arise from the particular
molecular structure of the amphiphiles?
R. Oda, I. Huc, M. Schmutz, S.J. Candau, F.C. MacKintosh.

Tuning bilayer twist using chiral counterions.
NATURE, vol. 399, 1999.



1.4 This is a long lasting story ...
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PNAS, vol. 108, n. 16, 2011.



1.5 ... and here is what happens to Twist-Nematic Elastomers

330 K 353 K 370K 334 K 378 K

Y. Sawaa, F. Ye, K. Urayama, T. Takigawa, V. Gimenez-Pinto, R.L.B. Selinger, J.V.
Selinger,

Shape selection of twist-nematic-elastomer ribbons.

PNAS, vol. 108, n. 16, 2011.



2. Nematic Elastomers

2.1 Nematic elastomers exhibit large distortions of a special kind:

if the stress-free shape of a mesoscopic chunk of NE is a spherical ball when
the appended mesogens are in the disordered, isotropic phase (left), its
stress-free shape in the ordered, nematic phase is a spheroid whose polar
axis is aligned with the prevailing mesogen direction (right).
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3. Isotropic-nematic Phase Transitions

3.1 Nematic direction is represented by
N =n®n, with n a unit vector, called director

3.2 Nematic distortions are then represented by the tensor
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Phase diagram of a typical NE: strains versus temperature (J, = 1).



4. Elastic Strain

4.1 Given a volume element dV, the elastic deformation F. measures the
difference between its distorted image dv, = U, dV and its actual state
dv=FdV.

dv=FdV =F.dv,

F -1
F.=FU,
this is the “further strain”
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Uo dve = Uy dV

4.2 The elastic energy ¢ has to be a function of the elastic strain C. = FIFE:

Y. Sawaa, K. Urayama, T. Takigawa, A. DeSimone, L. Teresi, Thermally Driven
Giant Bending of Liquid Crystal Elastomer Films with Hybrid Alignment,
Macromolecules, 2010.



5. Preparation

5.1 Specimens are prepared in the nematic & wet state, and are initially flat.
The nematic configuration is imprinted in the elastomer matrix by the
cross-linking reaction in the presence of a nonreactive dopant, and
appropriate glass substrates coated with uniaxially rubbed layer.

5.2 The specimen undergoes an anisotropic de-swelling (irreversible) and a
temperature-controlled nematic-to-isotropic phase transition (reversible)
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5.3 Nematic distortions are then represented by the tensor
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5.4 Nematic-isotropic transition is volume preserving, de-swelling is not:
M@ @) =1, al(v)aei() =wv.
5.5 Let us have a look at the resultant strains:

AL (@) o (va) )= ML) i (va)
NS I VTS

A (9, v) =
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6. Chiral

6.1 Chiral geometry: N is on horizontal planes

¥ = 9%(z)

n(¥) = cos(V¥) e1 + sin(V) ez

Uo(¥) = A\ N(®) + AL (I-N())

Co(d) = A2 N(¥) + A2 (I - N())

6.2 What is the realized configuration?



6.3 The elastic strain must accommodate non-homogeneous and non isotropic
distortions; we study two chiral geometries:

L-geom: S-geom:
at midplane director || axis at midplane director L axis

6.4 There are two strategies: twist or bend; the transition from one shape to the
other is sharp.
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7. L- & S-Geometry

7.1 The handedness is determined by the torsion by12:

1
boi2 > 0 = right-handed; 3 ()\|2| —22) L-geometry;
bo12 = L
bo12 < 0= left-handed. 5 ()‘3_ _ )‘ﬁ) S-geometry.
1.0
I L-geom: Right-handed L-geom: Left-handed
ool
o8l
o7l " Al
L S-geom: Left-handed S-geom: Right-handed N—mnx
I de-swelling heating heating
T T T

prep. state dry state flat state isotropic state



7.2 Helicoid to Ribbon
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Y. Sawaa, F. Ye, K. Urayama, T. Takigawa, V. Gimenez-Pinto, R.L.B. Selinger, J.V.
Selinger, Shape selection of twist-nematic-elastomer ribbons, PNAS, 2011.



8. Shape Formation

8.1 Shape transition is dependent on the the ratio:

torsional stiffness width

o
bending stiffness height
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Plane Shear

Vertical displacement at tip
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9. Shape Transition
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9.1 Narrow VS Wide bars
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