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Introduction
Nematic Elastomers (NEs) have both the elastic properties of 
rubbers and the orientational properties of liquid crystals. Those 
two properties makes the shape of NEs very sensitive to 
isotropic-nematic phase transition. Our goal is to replicate with 
numerical experiments the phenomena of shape formation in 
slender bar made of twist-nematic elastomers (TNEs), where 
chirality plays a critical role.
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Nematic Elastomer

1 Nematic Elastomers

1.1 Nematic elastomers exhibit large distortions of a special kind:

if the stress-free shape of a mesoscopic chunk of NE is a spherical
ball when the appended mesogens are in the disordered, isotropic
phase (left), its stress-free shape in the ordered, nematic phase is a
spheroid whose polar axis is aligned with the prevailing mesogen direc-
tion (right).
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Disordered, isotropic phase (left, T>TNI), ordered, nematic phase (right, T<TNI);
RVE is a spheroid whose polar axis is aligned with the mean mesogen direction.

Mean nematic 
direction N

Physical Model
Elastomeric distortions are sensible to both solvent evaporation 
(v) and temperature (ϑ) and can be described by uniaxial 
stretches Uo aligned with the nematic orientation N:

A key role is played by the resultant stretches:

The temperature-induce stretches are highlighted in red, the de-
swelling-induced ones in blue. The uniaxial stretches Uo enter 
the elastic energy of the system as a pre-strain. 

Results: shape-temperature dependence

Uo(ϑ, v) = Λ�(ϑ, v)N+ Λ⊥(ϑ, v) (I−N)
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Figure 2: Evolution of effective strains Λ�(ϑ, v) and Λ⊥(ϑ, v) during
deswelling at constant temperature ϑo (left, dashed) and heating at con-
stant volume vd (right, solid).
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Figure 2: Evolution of effective strains Λ�(ϑ, v) and Λ⊥(ϑ, v) during
deswelling at constant temperature ϑo (left, dashed) and heating at con-
stant volume vd (right, solid).
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Figure 2: Evolution of effective strains Λ�(ϑ, v) and Λ⊥(ϑ, v) during
deswelling at constant temperature ϑo (left, dashed) and heating at con-
stant volume vd (right, solid).
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Phase Transformations at Microscopic Scale

5 Preparation

6.1 Specimens are prepared in the nematic & wet state, and are initially
flat.
The nematic configuration is imprinted in the elastomer matrix by
the cross-linking reaction in the presence of a nonreactive dopant, and
appropriate glass substrates coated with uniaxially rubbed layer.

6.2 The specimen undergoes an anisotropic de-swelling (irreversible)
and a temperature-controlled nematic-to-isotropic phase transition (re-
versible)

de-swelling heating

preparation state
v = 1, ϑ = ϑp

∼ 50% volume reduction
v = vd, ϑ = ϑp

flat
v = vd, ϑ = ϑf

isotropic state
v = vd, ϑ = ϑNI

6.3 Nematic distortions are then represented by the tensor

Uo =
λ�(ϑ)α�(v)

λ�(ϑp)
N+

λ⊥(ϑ)α⊥(v)

λ⊥|(ϑp)
(I−N) .

6.4 Nematic-isotropic transition is volume preserving, de-swelling is not:

λ�(ϑ)λ2
⊥(ϑ) = 1 , α�(v)α2

⊥(v) = v .

6.5 We can define the overall strains:

λ�(ϑ, v) =
λ�(ϑ)α�(vd)

λ�(ϑp)
, λ⊥(ϑ, v) =

λ⊥(ϑ)α⊥(vd)

λ⊥|(ϑp)
.
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Specimens are prepared in the nematic & swollen state (θ=θo, v=1), and are initially 
flat. Then, they undergo two transformations: deswelling at constant 

temperature θo (irreversible); nematic-to-isotropic phase transition (reversible).

Chirality
with A∗ = det(A)A−�

denoting the cofactor of A, and Je =
det(Fe) = J/v. Balance equations are given in weak form,

using a mixed method, that is, assuming as independent vari-

ables the displacement vector u, and the pressure p; moreover,

we neglect any bulk or surface load (apart from the reactions to

the kinematical constraints). The problem is then stated as fol-

lows: find a displacement u, and a pressure p such that, for all

test function �u (compatible with the kinematical constraints),

and �p it holds:

�

B
−S ·∇�u = 0 ,

�

B
(

p

k
+ J− v) · �p = 0 (13)

with B the computational domain. From (10), (12) it follows

that the reference stress S is a function of the independent vari-

ables u and p, and of the state variables (ϑ ,v):

S = S(u, p;ϑ ,v) . (14)

We can solve (13) for u and p, using the pair (ϑ ,v) as param-

eters; thus, we can determine the actual shape assumed by a

NE body B at different reduced temperature ϑ and deswollen

ratio v.

3 Twist Elastomers

The model presented in the previous section is used to sim-

ulate the behavior of slender bars made of NEs, fabricated

with a chiral arrangement of liquid crystal mesogens. We

consider as reference configuration a slender bar B of sides

L×W ×H representing the specimen at the preparation state,

(ϑ ,v) = (ϑo,1), that is, nematic and swollen. We denote with

{o;x,y,z} a Cartesian frame having its origin o at the center of

B, and the three axes aligned with L, W , and H, respectively;

finally, ei, i = 1,2,3 are three unit vectors parallel to the co-

ordinate axes. We assume the nematic tensor N to lie in the

horizontal plane x,y, and having a linear twist along z, with a

twist angle span αs = π/2. Denoted with α the angle between

the director n and the long axis of the bar, we consider two

director arrangements:

α(z) =−αs

H
z , α(z) =−αs

H
z+

π
2
, (15)

dubbed L- and S-geometry, respectively, see Fig.4.

Of primary importance is the fact that, for such geometries,

the field Uo(ϑ ,v) of nematic distortions is not compatible, not

even locally, except than at the preparation and the flat states;

actually, the compatibility of the distortion field would ensure

the unicity of a stress free solution for the elastic problem (13),

and give the possibility of a direct integration of the distortion

field to find the displacement u8
. Conversely, the lack of com-

patibility implies the loss of the unicity of the solution with the

possible occurrence of buckling phenomena
9
.

Fig. 4 L-geometry: the nematic axis at mid plane is aligned with the

long axis of the bar (left); S-geometry: the nematic axis at mid plane

is orthogonal to the long axis of the bar (right).

4 Results

Aimed at investigating the phenomena of shape formation, we

perform a series of numerical experiments on TNE bars B,

having different cross-sectional aspect ratios W/H, ranging

from ∼ 6 (narrow bar) to ∼ 22 (wide bar), and for both the

nematic geometries (L- and S-geometry). Our specimens are

unloaded, and clamped at the face x =−L/2 in order to elim-

inate rigid motions.

In particular, for each specimen, we first simulate

deswelling, by solving a sequence of N elastic problems cor-

responding to (ϑo,vi), where vi is a monotone decreasing se-

quence, with v1 = 1, vN = vd < 1. The final solution we obtain

corresponds to the dry-nematic state, and it is used as initial

condition to simulate the heating process; then, we solve an-

other sequence of N elastic problems for (ϑi,vd), where ϑi is

a monotone increasing sequence, with ϑ1 = ϑo, ϑN = 1. Our

main findings, whose detailed analysis is postponed to the fol-

lowing section, are listed here:

• The deformed configuration is always a shell-like beam,

in the sense that, for any (ϑ ,v) in our range, the actual

thickness H(ϑ ,v) is much smaller than the actual width

W (ϑ ,v), which in turn is much smaller than the actual

length L(ϑ ,v). Then, the deformed configuration of B
can be well described by its mid surface.

• There exist two different deformation modes: the he-

licoid (Mode I) and the spiral ribbon (Mode II); both

modes can be well approximated by two surfaces which

admit an analytical representation.

• The handedness of the deformation modes depends on

the (sign of the) difference between the square of the

overall strains, that is, on Λ2

� −Λ2

⊥.

• From the mechanical point of view, the shape transition

from helicoid to spiral ribbon is a buckling phenomenon

whose control parameter is the absolute difference be-

tween the overall strains: ∆ = �Λ� −Λ⊥�. For ∆ = 0 we

have the flat state; by departing from the flat state, ∆ > 0,

Mode I appears; then, above a critical value of ∆c, which

4 | 1–7

The nematic axis at mid plane may be parallel to the axis of the bar (left, L-
geometry), or orthogonal (right, S-geometry). The nematic axis varies linearly from 
top to bottom with an overall twist of Pi/2, thus inducing a chiral microstructure.

axis of the bar

Computational Model
We model the TNEs in the framework of 3D incompressible non-linear elasticity with large pre-strains, and we account for both 
chirality, de-swelling and temperature changes. We use three nested Parametric Sweep nodes to solve the model; the first Sweep 
generates a parametric geometry, the second and the third ones simulate de-swelling and temperature variation.

Shape Transition at Macroscopic Scale
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2 The physical model

We model the NEs in the framework of non-linear elasticity
with large distortions6. We consider a material whose state is
described, apart from a displacement field u, by the pair (ϑ ,v):
the reduced temperature ϑ = T/TNI is the ratio between the
actual temperature T , and the transition temperature TNI ; the
second one v = V/Vo measures the ratio between the actual
volume V and the initial one Vo. We represent the nematic
orientation with the nematic tensor field∗ N :=n⊗ n, with n,
the director, a unit vector field (|n|= 1).

A key feature of the elastomeric distortions we deal with is
that they are sensible to both solvent evaporation and temper-
ature, and both can be described by uniaxial stretches aligned
with the nematic orientation N:

Uv(v) = α�(v)N+α⊥(v)(I−N) , vol-dependent;

Uϑ (ϑ) = λ�(ϑ)N+λ⊥(ϑ)(I−N) , temp-dependent.
(1)

where I is the identity. The scalars α�(v) and α⊥(v) represent
the magnitude of the deswelling-induced stretches, at constant
temperature, along n, and on the plane orthogonal to n, re-
spectively; the stretches λ�(ϑ), λ⊥(ϑ) are instead temperature
dependent, see Fig.(2). It is worth noting that the nematic-
isotropic transition is volume preserving, while deswelling is
not:

λ�(ϑ)λ 2
⊥(ϑ) = 1 , α�(v)α2

⊥(v) = v ; (2)

these last relations can be used to infer the functions λ⊥(ϑ),
α⊥(v) from λ�(ϑ) and α�(v), or viceversa. By definition,
α�(1) = 1, λ�(1) = 1; typically, both functions monotoni-
cally decrease as v and ϑ decrease: α�(v) < 1 for v < 1, and
λ�(ϑ) < 1 for ϑ < 1. Moreover, the anisotropic deswelling
described by (1)1 is observed only at T < TNI , that is, it is
a macroscopic consequence of the underlying nematic order
present during preparation.

2.1 Swollen Nematic Gels

Specimens are prepared in the nematic & swollen state, at
a temperature To < TNI , thus, ϑ = ϑo, v = 1, with ϑo =
To/TNI , and are initially flat. Then, the specimens undergo
two transformations: deswelling at constant temperature ϑo
(irreversible), until a dry state with v = vd (∼ 50% volume re-
duction); nematic-to-isotropic phase transition (reversible) at
constant deswollen ratio vd , until a temperature ϑ > 1. In or-
der to have the preparation state as reference state, we define
the overall distortion Uo(ϑ ,v) = Uϑ (ϑ)U−1

ϑ (ϑo)Uv(v); thus,

∗Not to be confused with the nematic order tensor. The nematic tensor N is
the proper kinematics descriptor as it accounts only for the orientation of
molecules, without discriminating between +n and −n.
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Fig. 2 Temperature dependence of λ�(ϑ) and λ⊥(ϑ). The curves
correspond to eq. (5), with parameters a and β as in table (1).

it follows from (1)

Uo(ϑ ,v) =
λ�(ϑ)α�(v)

λ�(ϑo)
N+

λ⊥(ϑ)α⊥(v)
λ⊥(ϑo)

(I−N) . (3)

Relation (3) prompts the introduction of the resultant
stretches:

Λ�(ϑ ,v) =
λ�(ϑ)α�(v)

λ�(ϑo)
, Λ⊥(ϑ ,v) =

λ⊥(ϑ)α⊥(v)
λ⊥(ϑo)

, (4)

which account for both solvent evaporation and temperature
change. In actual experiments2,3 it is possible to measure
the deswelling distortions αd

� = α�(vd), αd
⊥ = α⊥(vd) at the

dry state vd ; also, by measuring the temperature dependent
stretches, a fitting expression for λ�(ϑ) can be determined:

λ�(ϑ) =






�
1+β (1.01−ϑ)a�1/2

, ϑ < 1;

1 , ϑ ≥ 1 .
(5)

A key point is the existence of a temperature ϑ f such that
Λ�(ϑ f ,vd) = Λ⊥(ϑ f ,vd); the state (ϑ f ,vd) is thus flat, and
characterized by a spherical distortion Uo(ϑ f ,vd) ∝ I, given
by

Uo(ϑ f ,vd) = Λ f I , Λ f = Λ�(ϑ f ,vd) = v1/3
d . (6)

From (4) and the volumetric constraints (2), we have

λ f = λ�(ϑ f ) = λ�(ϑo)
v1/3

d
αd
�

= λ�(ϑo)

�
αd
⊥

αd
�

�2/3

. (7)

It is worth noting that the resultant stretches Λ f is uniquely
determined by the dry volume vd , whereas λ f and ϑ f , which
are related through (5), depend on the preparation temperature
ϑo, and on the deswelling stretches at the dry state αd

� , αd
⊥.

Finally, we note that the nematic orientation N does not enter
in the formula for Λ f or ϑ f ; nonetheless, N plays a key role in
determining the macroscopic shape of a given specimen when
(ϑ ,v) �= (ϑ f ,vd).
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