Ribbon Formation in Twist-Nematic Elastomers
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Introduction Nematic Elastomer

Nematic Elastomers (NEs) have both the elastic properties of

rubbers and the orientational properties of liquid crystals. Those - R N .,y Mean nemaic
two properties makes the shape of NEs very sensitive to w?v direction N
1sotropic-nematic phase transition. Our goal 1s to replicate with i b |

numerical experiments the phenomena of shape formation in do do A

slender bar made of twist-nematic elastomers (TNEs), where Isotropic phase Nematic phase

chirality plays a critical role. Disordered, isotropic phase (left, T>Tn1), ordered, nematic phase (right, T<Tny);

RVE 1s a spheroid whose polar axis 1s aligned with the mean mesogen direction.

Physical Model Phase Transformations at Microscopic Scale
Elastomeric distortions are sensible to both solvent evaporation

. o de-swelling heating
(v) and temperature () and can be described by uniaxial . ‘ '
stretches U, aligned with the nematic orientation N:
preparation state ~ 50% volume reduction flat 1sotropic state
U,(,v) = Aj(0,v) N+ A (¥,v) (I—N) v=119=71, v =1g, ¥ =V, v=vg, 0 =0 v=1y 0 =0DN

Specimens are prepared in the nematic & swollen state (0=0,, v=1), and are 1nitially
flat. Then, they undergo two transformations: deswelling at constant
temperature 0, (irreversible); nematic-to-isotropic phase transition (reversible).

A key role 1s played by the resultant stretches:

(o) = AVA) gy Ay .
(A A (3,) ) A (3,) Chirality
The temperature-induce stretches are highlighted i1n red, the de-
swelling-induced ones 1n blue. The uniaxial stretches U, enter axis of the bar = |
the elastic energy of the system as a pre-strain. The nematic axis at mid plane may be parallel to the axis of the bar (left, L-

oeometry), or orthogonal (right, S-geometry). The nematic axis varies linearly from
top to bottom with an overall twist of P1/2, thus inducing a chiral microstructure.

Shape Transition at Macroscopic Scale
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Results: shape-temperature dependence
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Computational Model

We model the TNEs 1n the framework of 3D incompressible non-linear elasticity with large pre-strains, and we account for both
chirality, de-swelling and temperature changes. We use three nested Parametric Sweep nodes to solve the model; the first Sweep
generates a parametric geometry, the second and the third ones simulate de-swelling and temperature variation.
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