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Abstract: Nematic Elastomers (NEs) possess
very interesting properties stemming from the in-
teraction between liquid crystal order and rubber
elasticity. For such materials, thermally-induced
phase transition from the isotropic to the nematic
phase may induce very large distortions, which
in turn can affect the overall configuration of a
macroscopic specimen. The behavior of NEs can
be well modeled within the theory of finite elas-
ticity with distortions; here, we test a theoretical
model against fancy shapes formation; in particu-
lar, we deal with the many different shapes that a
thin, slender bar, made of NE, may assume as a
consequence of its chiral symmetry during solvent
evaporation and subsequent heating. Our goal has
been to replicate with numerical experiments the
phenomena of shape formation in chiral NEs, and
our results constitute a noteworthy assessment of
the physical model underlying the numerical solu-
tions.
Keywords: Shape formation, Liquid crystal
elastomer, nematic- isotropic phase transition,
swelling.

1. Introduction

Nematic Elastomers (NEs) possess very inter-
esting properties stemming from the interaction
between liquid crystal order and rubber elastic-
ity [1]. Such materials exhibit a direct coupling
between the mesogen alignment and their over-
all conformation; as a result, the nematic effect on
the macroscopic properties can be of the essence in
determining the actual shape of a given specimen,
especially for monodomain NEs, characterized by
a regular nematic alignement.

A particular class of NEs features two sorts of
large, anisotropic, transformations: the first one,
thermally induced, is due to an isotropic-nematic
phase transition; the second one is a deswelling
that manifests if solvent evaporates at the nematic
state. Both phenomena can produce large changes
of configuration in a macroscopic specimen, with

a noticeable distinction: during solvent evapora-
tion the nematic order is strongly coupled with
volume as well as shape, and deswelling induces
permanent, anisotropic shape changes; conversely,
the thermal effects are reversible: cooling below a
transition temperature TNI increases the nematic
order, thus driving a spontaneous elongation along
the nematic direction, whereas heating towards
TNI induces a reverse deformation.

The behavior of NEs can be well modeled within
the theory of finite elasticity with distortions; here,
the same model used in [3] is tested against more
fancy shapes formation; in particular, we have
been prompted by the new interesting results pub-
lished in [4], and we deal with the many different
shapes that a thin, slender bar, may assume as
a consequence of its chiral symmetry during sol-
vent evaporation and heating. Our goal has been
to replicate with numerical experiments the phe-
nomena of shape formation in twist-nematic elas-
tomers (TNEs), and our results constitute a note-
worthy assessment of the physical model underly-
ing the numerical solutions. A detailed description
about preparation of TNEs, and experimental re-
sults is given in [4].

2. The physical model

We model the NEs in the framework of non-
linear elasticity with large distortions [2]. We con-
sider a material whose state is described, apart
from a displacement field u, by the pair (ϑ, v):
the reduced temperature ϑ = T/TNI is the ratio
between the actual temperature T , and the tran-
sition temperature TNI ; the second one v = V/Vo
measures the ratio between the actual volume V
and the initial one Vo. We represent the ne-
matic orientation with the nematic tensor field
N :=n ⊗ n, with n, the director, a unit vector
field (|n| = 1).

A key feature of the elastomeric distortions we
deal with is that they are sensible to both sol-
vent evaporation and temperature, and both can
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be described by uniaxial stretches aligned with the
nematic orientation N:

Uv(v) = α‖(v)N + α⊥(v) (I−N) ,

Uϑ(ϑ) = λ‖(ϑ)N + λ⊥(ϑ) (I−N) .
(1)

where I is the identity. The scalars α‖(v) and
α⊥(v) represent the magnitude of the deswelling-
induced stretches, at constant temperature, along
n, and on the plane orthogonal to n, respectively;
the stretches λ‖(ϑ), λ⊥(ϑ) are instead temper-
ature dependent. It is worth noting that the
nematic-isotropic transition is volume preserving,
while deswelling is not:

λ‖(ϑ)λ2
⊥(ϑ) = 1 , α‖(v)α2

⊥(v) = v . (2)

The preparation state (ϑ, v) = (ϑo, 1), with
ϑo = To/TNI is assumed as reference; thus,
we define the resultant distortion Uo(ϑ, v) =
Uϑ(ϑ)U−1

ϑ (ϑo)Uv(v): it follows from (1)

Uo(ϑ, v) =
λ‖(ϑ)α‖(v)

λ‖(ϑo)
N+

λ⊥(ϑ)α⊥(v)

λ⊥(ϑo)
(I−N) .

(3)
Relation (3) prompts the introduction of the re-
sultant stretches:

Λ‖(ϑ, v) =
λ‖(ϑ)α‖(v)

λ‖(ϑo)
, Λ⊥(ϑ, v) =

λ⊥(ϑ)α⊥(v)

λ⊥|(ϑo)
,

(4)
which account for both solvent evaporation and
temperature change. In actual experiments it
is possible to measure the deswelling distortions
αd
‖ = α‖(vd), αd

⊥ = α⊥(vd) at the dry state
vd; also, by measuring the temperature dependent
stretches, a fitting expression for λ‖(ϑ) can be de-
termined:

λ‖(ϑ) =


[
1 + β(1− ϑ)a

]1/2
, ϑ < 1;

1 , ϑ ≥ 1 .
(5)

Within the theory of elasticity, distortions de-
scribe the change of ground states, that is, states
at zero elastic energy. Thus, given a displacement
field u with respect to the preparation state, its
gradient F = I + ∇u describes the actual defor-
mation of volume elements; the difference between
actual deformation and distortion is measured by
the elastic deformation Fe = FU−1

o , and the elas-
tic energy has to be a function of the elastic strain

Ce, defined as

Ce = Fe
>Fe = U−>o CU−1

o , with C = F>F .
(6)

We consider here a Neo-Hookean energy, the sim-
plest non-linear elastic energy, given by

φ(Ce) = 1
2 µ (Ce · I− 3) = 1

2 µ (C ·C−1
o − 3) ,

det (Co) = v2,
(7)

with µ the shear modulus, and Co the distortional
strain induced by Uo:

Co(ϑ, v) = U>o (ϑ, v)Uo(ϑ, v) . (8)

It can easily be verified that the preparation state
(nematic-swollen) realizes the reference configura-
tion:

(ϑ, v) = (ϑo, 1) ⇒ Uo = I ⇒ Co = I ⇒ C = I ;

moreover, another global stress-free configuration
exists, the one corresponding to the flat tempera-
ture ϑf

(ϑf , vd) ⇒ Co = v
2/3
d I ⇒ C = v

3/2
d I .

3. Twist-Nematic Elastomers

The model presented in the previous section
is used to simulate the behavior of slender bars
made of NEs, fabricated with a chiral arrange-
ment of liquid crystal mesogens. We consider as
reference configuration a slender bar B of sides
L×W×H representing the specimen at the prepa-
ration state, (ϑ, v) = (ϑo, 1), that is, nematic and
swollen. We denote with {o;x, y, z} a Cartesian
frame having its origin o at the center of B, and
the three axes aligned with L, W , and H, respec-
tively; finally, ei, i = 1, 2, 3 are three unit vectors
parallel to the coordinate axes. We assume the ne-
matic tensor N to lie in the horizontal plane x, y,
and having a linear twist along z, with a twist
angle span αs = π/2. Denoted with α the angle
between the director n and the long axis of the
bar, we consider two director arrangements:

α(z) = −αs

H
z , α(z) = −αs

H
z +

π

2
, (9)

dubbed L- and S-geometry, respectively, see Fig.1.
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Figure 1: Left, L-geometry: the nematic axis at mid plane
(thick arrow) is aligned with the long axis of the bar (thin
arrow, dashed). Right, S-geometry: the nematic axis at
mid plane is orthogonal to the long axis of the bar.

4. Model implementation

Aimed at investigating the phenomena of shape
formation, we perform a series of numerical ex-
periments on TNE bars B, having different cross-
sectional aspect ratios W/H, ranging from ∼ 6
(narrow bar) to ∼ 22 (wide bar), and for both
the nematic geometries (L- and S-geometry). Our
specimens are unloaded, and clamped at the face
x = −L/2 in order to eliminate rigid motions.

In particular, for each specimen, we first simu-
late deswelling, by solving a sequence of N elas-
tic problems corresponding to (ϑo, vi), where vi
is a monotone decreasing sequence, with v1 = 1,
vN = vd < 1. The final solution we obtain corre-
sponds to the dry-nematic state, and it is used as
initial condition to simulate the heating process;
then, we solve another sequence of N elastic prob-
lems for (ϑi, vd), where ϑi is a monotone increasing
sequence, with ϑ1 = ϑo, ϑN = 1.

We implement the balance equations of
non-linear elasticity in weak form, using the
volumetric-deviatoric decomposition of the defor-
mation measures, and adopting a mixed method.
Thus, we have as independent variables the dis-
placement vector u, and the pressure p; given
F = I + ∇u, we consider the following relaxed
strain energy density: φr = φs + φv, with

φs = 1
2 µ (Cs ·C−1

o − 3) isochoric energy;

φv = k
2 (J − v)2 volumetric energy;

Cs = (v/J)2/3 C , unimodular part of C;

p = −k (J − v) , pressure;

J = det (F) , volume change;
(10)

and k the bulk modulus. The reference stress S

and the actual stress T are then given by

S = 2Fe Ssc F̄
∗
o − pF∗,

T = S (F∗)−1
(11)

with A∗ = det (A)A−> denoting the cofactor of
A, and

Ssc =
∂φs
∂Ce

=
1

2
µJ−2/3

e

(
I− 1

3
tr(Ce) (Ce)−1

)
,

(12)
where Je = det (Fe) = J/v. It follows

S = µ vFC−1
o − pF∗ ;

T = µ
1

Je
Fe F

>
e − p I .

(13)

From (8), (13) it follows that the reference stress
is a function of the independent variables u and p,
and of the state variables (ϑ, v):

S = S(u, p;ϑ, v) . (14)

Thus, we can solve our problem for u and p, using
the pair (ϑ, v) as parameters; in particular, using
the parametric solver, we first simulate deswelling,
by solving a sequence of N elastic problems cor-
responding to (ϑn, vi), with v1 = 1, vN = vd < 1.
The final solution we obtain corresponds to the
dry-nematic state, and it is used as initial data to
simulate the heating process; thus, we solve an-
other sequence of N elastic problems for (ϑi, vd),
with ϑ1 = ϑn, ϑN = 1.

5. Results

Our main findings are listed here:

• The deformed configuration can be well de-
scribed by its mid surface.

• There exist two different deformation modes:
the helicoid (Mode I) and the spiral ribbon
(Mode II).

• The shape transition from helicoid to spiral
ribbon is ruled by ‖Λ‖ − Λ⊥‖.

• The handedness of the modes is ruled by the
sign of Λ2

‖ − Λ2
⊥.
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Figure 2: Evolution of resultant stretches Λ‖ and Λ⊥ dur-
ing heating at constant volume vd (solid lines). The shape
transitions are for a TNE bar with W/H ∼ 15.

Fig. 2 shows shape transitions for a typical TNE
bar with W/H ∼ 15. The range of temperature
centered at Tf corresponding to helicoidal shapes
changes with the ratio W/H; for small ratios, it
becomes larger, and eventually the ribbon phase
is never observed; conversely, for larger ratios it
gets smaller, and helicoidal shapes can be realized
only at temperature very close to Tf .

We analyze the geometric properties of the
shapes we obtain using some basic notions of
2D differential geometry; the fundamental forms
(FFs) relative to such shapes can be evaluated as
follows from the results of our 3D numerical sim-
ulations: define the vector fields:

ai = (F|z=0) ei , n =
a1 × a2

|a1 × a2|
, (15)

then, compute the FFs

aij = ai · aj bij = n,i · aj , (16)

where n,i denotes derivative of n with respect to
the i-th coordinate. Global geometrical proper-
ties can then be evaluated from the FFs; among
them, we list helicoid twist pitch, ribbon diame-
ter, ribbon helical pitch and the handedness of the
torsion.

Fig. 3 shows the value of b11, the longitudinal
curvature of the axis of the bar, versus the re-
duced temperature ϑ = T/TNI , for eight different
bars having the same height, Hf = 35µm, and
the same length (Lf = 7000µm), whose widths

range from Wf = 200µm to Wf = 900µm (sub-
script “f” denotes that these values are referred
to the flat state); the departure from the straight
line denotes the onset of shape transition from he-
licoid to spiral ribbon. For the L-geometry, the
plots relative to the first three cases are super-
imposed, and only the red line is visible: in the
whole range of temperature change, such bars real-
ize only helicoidal shapes; for the L-geometry, the
plots relative to the first two cases are superim-
posed. The phenomenon of shape transition can

Figure 3: Longitudinal Curvature VS Reduced Tempera-
ture (L-geometry, top; S-geometry, bottom) for bar with
same height but different width Wf ; the departure from
the straight line denotes the onset of shape transition.

be appreciated through Fig. 4: the plot at the
center shows the evolution of resultant stretches
Λ‖(ϑ, v) and Λ⊥(ϑ, v) during deswelling at con-
stant temperature ϑo (dashed lines) and heating
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Figure 2: Evolution of effective strains Λ�(ϑ, v) and Λ⊥(ϑ, v) during
deswelling at constant temperature ϑo (left, dashed) and heating at con-
stant volume vd (right, solid).
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Figure 2: Evolution of effective strains Λ�(ϑ, v) and Λ⊥(ϑ, v) during
deswelling at constant temperature ϑo (left, dashed) and heating at con-
stant volume vd (right, solid).
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Figure 2: Evolution of effective strains Λ�(ϑ, v) and Λ⊥(ϑ, v) during
deswelling at constant temperature ϑo (left, dashed) and heating at con-
stant volume vd (right, solid).
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Figure 4: Evolution of resultant stretches Λ‖(ϑ, v) and Λ⊥(ϑ, v) during deswelling at constant temperature ϑo (dashed
lines) and heating at constant volume vd (solid lines). Cartoon at top and bottom shows the shape evolution of two slender
bars with different cross-section aspect ratio.

at constant volume vd (solid lines); thumbnails at
top and bottom show the shape evolution of two
slender bars having cross-section with different as-
pect ratio. For deswelling, the dashed lines repre-
sents just a possible path; for heating, the two
lines are a straightforward consequence of (4, 5).
Fig. (5) shows the shape change due to heating
(increasing temperature from left to right) for a
wide bar having an L-geometry and W/H ∼ 15.

T=313 oK T=343 oK T=353 oK T=359 oK T=370 oK

Figure 5: L-geometry, wide bar, increasing temperature
from left to right. The specimen has a ribbon-like shape at
low temperature; then it is a helicoid near the flat temper-
ature, and becomes again a ribbon, with a different hand-
edness, near the transition temperature.

To = 313 K preparation temperature

TNI = 367 K transition temperature

vd= 0.5 dry volume / initial volume

αd
‖ = 0.907 dry parallel stretch

αd
⊥ = 0.743 dry orthogonal stretch

a = 2/3 , β = 4.94 fitting parameter for λ‖(ϑ)

Table 1: Numerical values used in numerical experiments

6. Conclusions

We are able to replicate the experimental find-
ings in [4], thus having a robust assessment of the
physical model underling the numerical solutions.
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