
 

 

Simulation of PCM Melting Process in a Differentially  

Heated Enclosure  
 

Petrone G.
*
, Cammarata G.  

Department of Industrial Engineering – University of Catania  

Viale A. Doria, 6, 95125 Catania (ITALY)  

*Corresponding author: gpetrone@diim.unict.it  

 

 

Abstract: The relevance of Phase Change 

Materials (PCM) in solar energy applications is 

becoming more and more crucial. Because of 

their favorable thermo-dynamical characteristics, 

such as high density, specific heat and latent heat 

of fusion, PCM are usually employed as working 

fluids and for thermal storage. This study deals 

with a numerical investigation of the melting 

process of a PCM in a rectangular enclosure 

differentially heated. COMSOL Multiphysics is 

used in order to numerically solve Navier-Stokes 

and energy equations in the considered system. 

Adopting an enthalpy formulation, one single 

equation is used to solve transient conduction 

and convection heat transfer in both the solid and 

liquid phase. The solid-liquid interface location, 

the liquid flow patterns and the thermal maps 

obtained for several transient heating conditions 

well highlight the natural convection effect, 

enhancing heat transfer in the top portion of the 

cavity. The results carried-out by simulations are 

successfully compared with experimental data 

previously published in literature and concerning 

an analogue system. The shapes of the melt front 

obtained at various times from computations 

well fit with experiments. Also, quantitatively 

comparison between numerical and experimental 

results show good agreement. From 

comparisons, the proposed numerical approach 

appears validated and suitable for use in the pre-

design of PCM storage systems. 
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1. Introduction 
 

Melting and solidification phenomena 

involve in several industrial processes, such as 

materials processing, metallurgy, purification of 

metals, growth of pure crystals from melts and 

solutions, solidification of casting and ingots, 

welding, electroslag melting, zone melting, 

thermal energy storage using phase change 

materials (PCM), and so forth. A complete 

understanding of the phase change phenomenon 

involves an analysis of the various processes that 

accompany it. The most important of these 

processes, from a macroscopic point of view, is 

the heat transfer process. This is complicated by 

the release, or absorption, of the latent heat of 

fusion at the “moving” solid–liquid interface [1]. 

The literature on phase change thermal problems, 

their formulation, solution, models and results is 

extremely rich [2-3]. Highlighting a key aspect 

connected to the present study, the research 

works realized by Sparrow et al. [4] and Kemink 

and Sparrow [5] clearly indicated the importance 

of natural convection during the solidification 

process, resulting in increasing of the 

solidification time of the PCM. From a 

modelling point of view, heat transfer in a PCM 

storage is a transient, non-linear phenomenon 

with a moving solid-liquid interface, generally 

referred to as a “moving boundary” problem. 

Non-linearity is the source of the difficulties 

when solving numerically moving boundary 

problems. In order to ride out this inconvenience, 

some numerical methods have been proposed [6-

8] and applied. Rao and Sastri [9] proposed an 

efficient numerical method that isolates the non-

linearity associated with the moving interface 

and accurately tracks the interface movement. 

Voller [10] proposed an alternative discretization 

scheme for the enthalpy formulation which was 

based on separating the sensible and latent heat 

terms. This approach also resulted in a non-linear 

system of equations but with the non-linearity 

isolated as a source term of nodal latent heat. 

Kim and Kaviany [11] developed a highly 

accurate and efficient finite difference method 

for phase change problems with multiple moving 

boundaries of irregular shape by employing a 

coordinate transformation to immobilize moving 

boundaries and preserve the conservation form 

of the basic equations. A stable ADI method for 

simulating multi-dimensional solidification 

problems was proposed by Mampaey [12]. He 

substituted the explicit temperature calculation 
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by an implicit one which was employed on a 

limited number of adjacent elements. Voller [13] 

presented a rapid implicit solution technique for 

the enthalpy formulation of the conduction 

controlled phase change problems. He examined 

three implicit schemes and proposed a new 

enthalpy solution scheme requiring no under or 

over relaxation. Lee and Tzong [14] proposed an 

enthalpy formulation for a phase change material 

having a distinct freezing temperature. Raw and 

Lee [15] reported a numerical formulation based 

on the weighting function scheme for 

convection-conduction phase change problems in 

which the solid phase is regarded as a liquid 

having an infinite viscosity. Rabin and Korin 

[16] presented a simple numerical technique for 

solving transient multi-dimensional heat transfer 

problems with melting or solidification 

processes. Clavier et al. [17] reported a fixed 

grid method using an updating iterative implicit 

scheme to solve one-dimensional phase change 

problems. More recently, Lamberg [18] proposed 

an approximate analytical model for two-phase 

solidification problem in a finned phase-change 

material storage. Ismail et al. [19] studied the 

thermal performance of a PCM storage unit. In 

spite of the copious literature concerning the 

numerical simulation of the PCM melting 

process, few numerical contributions take into 

account the natural convection effect occurring 

in the liquid phase, that enhances heat transfer at 

the solid-liquid interface. In order to contribute 

to this subject, the present study is devoted to the 

validation of a FE-based model for simulating 

the melting process of a paraffin. Numerical 

results, carried-out by a convection-conduction 

heat transfer model, are compared with 

experimental ones previously published [20]. 

 

2. Mathematical formulation 
 

Because of natural convection effect in the 

liquid phase, the governing equations for 

transient analyses of the PCM melting process 

include the Navier-Stokes equations, the 

continuity equation, and the energy equation. 

Under assumption of laminar and incompressible 

flow, invoking the Boussinesq approximation in 

modelling the buoyancy force, the governing 

equations can be written as follows: 
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For the solid phase no convection effect have 

to be considered, so that heat transfer can be 

expressed by the following transient conduction 

equation: 
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In the solid-liquid interface the net amount of 

heat, which achieves the solid-liquid interface in 

a time unit, moves the distance of the phase 

change interface, which depends on the latent 

heat of the material. The energy balance for the 

solid-liquid interface can be expressed as: 
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where h is the convection heat transfer 

coefficient in the solid-liquid interface and ΔTn 

is the temperature difference between the 

“moving” solid-liquid interface and the boundary 

in the normal direction of the solid-liquid 

interface. One of the most used techniques for 

formulation and consequent solution of phase 

change problems is the enthalpy method [7]. In 

the enthalpy method, one single equation is used 

to solve both the solid and liquid domains of the 

problem. The method is based under the 

assumption that phase change happens with a 

small temperature variation, therefore T = TL-

TS, where TS is the temperature of the solid 

phase when the fusion process begins, while TL 

is the temperature of the liquid phase once the 

medium is fully melted. This assumption can be 

considered as realistic for a large number of 

media employed for thermal storage. Let 

consider the specific enthalpy function during a 

global transformation involving solid state 

heating, melting process and liquid state 

superheating: 
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By defining the thermal capacity as: 

 
H

T


 



 (7) 

 

From Eq. (6) and (7), we can write: 
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Being SL and CSL evaluated as the average 

value of density and specific heat respectively 

between the solid and the liquid phase. Hence, 

one single equation can be used for solving 

temperature field both in solid and liquid phase, 

that reads as follows: 
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Where the thermal conductivity kSL is the 

average solid-liquid value computed as defined 

above. From this formulation, it appears that Eq. 

(4) does not need to be solved for monitoring 

solid-liquid interface, that is just located in 

correspondence of the isothermal line defining 

the phase change temperature Tm = (TL+TS)/2. 

 

3. Numerical model 
 

Equations (1), (2) and (9) are numerically solved 

by using Comsol Multiphysics [21]. Because of 

the main goal of the present work consists in 

validating the adopted numerical approach, the 

considered physical system corresponds to that 

used by Wang et al. [20] in their experimental 

research. As a consequence, a rectangular 

enclosure with dimensions of 153 mm in width 

and 103 mm in height is considered filled by 

polyethylene glycol 900 (PEG900), whose 

geometry and applied boundary conditions are 

shown in Figure 1 and physical properties are 

reported in Table I, both for solid and liquid 

phase. 
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Figure 1 Outline of geometry for physical system and 

indication of applied boundary conditions. 

 
 Solid Liquid 

Density [kg m-3] 1100 1120 

Specific heat  at constant pressure [J kg-1 K-1] 2260 2260 

Thermal conductivity [W m-1 K-1] 0.188 0.188 

Coefficient of thermal expansion [K-1] - 7.6E-4 

 
Table I Physical properties for PCM. 

 

Momentum equations are solved overall the 

computational domain by adopting a smoothed 

Heaviside step function to locally define the 

viscosity value: for temperature higher than the 

melting temperature (liquid phase), the step 

function assumes values characterizing the real 

physical viscosity for the liquid; otherwise (solid 

phase), it assumes a chosen very high value 

(1E+6), determining motion impossibility for the 

medium with respect to the load conditions. The 

same strategy of implementation is adopted in 

order to define density and thermal  capacity as 

functions of the temperature. For thermal 

capacity definition, a two-steps function is 

applied in order to take into account the 

contribution of the latent heat of fusion, 

exchanged throughout the solid-liquid interface, 

spatially identified by the local thermal 

conditions (TS < T < TL with TL-TS = 0.01 °C). 

The continuous and derivable Heaviside 

functions used for simulations are graphically 

reported in Figure 2. As for the experimental 

apparatus used by Wang et al. [20], the cavity is 

differentially heated: the right vertical wall is 

kept at the constant temperature of 22°C, while 

heating is imposed at the hot left wall, applying a 

time-dependent temperature function. Horizontal 



 

 

walls are considered adiabatic. Five boundary 

heating conditions are simulated, using different 

time evolutions of temperature on the hot wall, 

as graphically reported in Figure 3. The melting 

temperature for the considered PCM is 34 °C and 

the latent heat of fusion is 150.5 kJ/kg. From 

fluid-dynamical point of view, adherence 

conditions are applied at all boundaries. For all 

test-cases analysed (Q1, .., Q5), at the initial 

conditions the system is at the rest and kept in 

solid state at the temperature of 22 °C.  

 

 
 

Figure 2 Smoothed Heaviside step functions used for 

define viscosity (dashed line), thermal capacity 

(continuous line) and density (dashed-dotted line)  as a 

function of the local temperature. 

 

 
 

Figure 3 Time-dependent boundary condition applied 

at the hot left wall for test-run  (Q1, .., Q5). 

 

Continuous equations are discretized by a finite 

elements method on a no-structured and no-

uniform computational mesh made of triangular 

Lagrange elements of order 2. Influence of 

spatial discretization has been preliminary 

checked, in order to assure mesh-independent 

results. Finally, a computational grid made of 

about 30,000 elements has been retained for 

computations. Time-marching is performed by 

adopting an Implicit Differential-Algebraic 

(IDA) solver [22], based on a variable-order and 

variable-step-size Backward Differentiation 

Formulas (BDF). Because the time-marching 

scheme is implicit, a nonlinear system of 

equations is solved each time step by applying a 

modified Newton algorithm. Algebraic systems 

of equations coming from differential operators 

discretization have been solved by a PARDISO 

package, a direct solver particularly efficient in 

order to solve unsymmetrical sparse matrixes by 

a LU decomposition technique. 

 

4. Results 

 

As claimed by Wang et al. [20], in a rectangular 

enclosure with one of its vertical walls suddenly 

elevated to a higher temperature, a thin melt 

layer forms adjacent to the heated surface at the 

initial stage, indicating that conduction is the 

dominant mode of heat transfer. As time 

progresses, the buoyancy induces a flow due to 

temperature gradient causing the melt volume at 

the top to recede at a faster rate compared to the 

bottom of the enclosure. The onset of natural 

convection causes the liquid-solid interface to 

curve, thus augmenting the melting process. 

What above discussed finds good comparison in 

simulations’ results obtained in the present 

study, as illustrated in Figures 4. For several time 

instants, Figures 3 report the portion of the 

volume occupied by the liquid and solid phase 

respectively, the velocity vectors and the 

temperature distribution inside the cavity. 

Results refer to the Q5 heating conditions. A 

post-processing logical function, labelled as B (if 

T<Tm then B=0 else B=1) is expressed in order 

to visualize the portion of the cavity where the 

PCM is at liquid or solid state respectively. Maps 

of B function values stand on the left side of 

Figures 4, highlighting by a red/green filling the 

liquid/solid phase. In these maps the white 

arrows identify vectors of the velocity field. As 

time is increased, fluid is propelled up by the 

thermal buoyancy, determining the onset of a 

convection roll in the left portion of the cavity. 

The convective structure grows with time and 

involves the solid-liquid interface to deform 

from its original almost vertical lying.  The 

thermal transport induced by fluid motion is well 

appreciable from reported temperature fields in 

the right side of Figures 4. At the beginning of 

the process, isotherms appear almost vertical, 

indicating the conduction as the predominant 

mechanism in heat transfer. While melting 

progresses, the liquid motion induces a strong 

isotherms deformation, that assume a global 



 

 

shape similar to the well-known one 

characterizing natural convection of a single 

phase fluid in a rectangular enclosure. The 

motion field enhances heat transfer in top left 

region of the cavity, that induces an oblique 

lying of the moving solid-liquid interface.  

 

 

 

 

 

 

 

Figure 4 Melting process for Q5 at several time 

instants (1800; 3600; 5400; 7200; 9000; 12000 [s]).  

On the left side: solid   (green) and liquid (red) phase, 

velocity vectors (in white). On the right side: Thermal 

map on coloured scale. 

 

By exploiting the results presented by Wang et 

al. in their paper [20], we also quantitatively 

compared our numerical results with 

experimental ones gathered by the reference, in 

terms of temperature distribution along chosen 

horizontal planes for a chosen time instant and 

referring to the different time-wise heating 

imposed (Q1-Q5). Figures 5 and 6 report an 

extract of these comparisons: for instance, they 

refers to the Q3 test and report temperature 

values recorded each hour (the heating time was 

six hours) along the top (Figure 5) and the 

bottom (Figure 6) wall of the cavity.  

 

  
 

  

  

Figure 5 Comparison between present study results 

(Num) and reference [20]  results (Exp): Temperature 

distribution along the top wall at several time steps. 

 

  

     

  

Figure 6 Comparison between present study results 

(Num) and reference [20]  results (Exp): Temperature 

distribution along the bottom wall at several time 

steps. 

 

Diagrams globally show a good agreement of 

simulated temperature values with experimental 

ones. It appears that curves referring to the top 



 

 

wall better fit with reference results then those 

describing thermal levels in correspondence of 

the bottom boundary. The numerical model 

highlights a large almost isothermal portion of 

the volume at the melting temperature. As a 

consequence, temperature distribution along the 

horizontal line lying on the bottom wall present 

evident discontinuities that have not been 

recorded by experimental acquisitions performed 

by Wang et al.. However, shaped curves 

comparable with ours are presented by Pal and 

Yoshi [23] in their work concerning an 

experimental and numerical analysis of the 

melting process in a side heated tall enclosure. 

Solid-liquid interface locations referring to test 

Q5 are also presented for different time and 

compared with Wang et al. results in Figure 7. 

The numerical curve refers to the 34 °C 

isothermal line. Comparison globally shows a 

good agreement. 

 

  
 

     
 

  
 
Figure 7 Comparison between present study results 

(Num) and reference [20]  results (Exp): Solid-liquid 

interface location at several time steps. 

 

5. Conclusion 
 

The melting process of a paraffin in a 

differentially heated rectangular enclosure is 

numerically simulated in this study. The 

enthalpy method is adopted for modelling heat 

transfer and the solid phase is regarded as a 

liquid having an almost infinite viscosity.  The 

solid-liquid interface location and the thermal 

maps obtained for several transient heating 

conditions well highlight the natural convection 

effect, enhancing heat transfer in the top portion 

of the cavity. The results carried-out by 

simulations are successfully compared with 

experimental data previously published in 

literature and concerning an analogue system. 

The shapes of the melt front obtained at various 

times from computations well fit with 

experiments. Also, quantitatively comparison 

between numerical and experimental results 

show good agreement. From comparisons, the 

proposed numerical approach appears validated 

and suitable for use in the pre-design of PCM 

storage systems. 
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