

Göran Eriksson, ABB Corporate Research, Västerås, Sweden

Coupled Electric/Thermal/Fluid Analysis of High Voltage Bushing

© ABB Group October 23, 2012 | Slide 1 Power and productivity for a better world™

Excerpt from the Proceedings of the 2012 COMSOL Conference in Milan

High Voltage Bushings

A large power transformer

- Modern power transmission systems operate at high voltage to reduce resistive loss due to large line currents
- On the low voltage side of a transformer the current is high
- A bushing prevents a flashover from a high voltage conductor penetrating a grounded wall
- Electric stress due to high voltage and/or thermal stress due to current-generated resistive heating must be kept under control

An Oil-Cooled DC Bushing to be Studied

Axisymmetric model of a bushing

- Unconventional DC bushing mounted on the bottom side of an oil-filled container
- Field stress is reduced using a Field Grading Material (FGM) having a field dependent conductivity
- The oil acts both as a cooling liquid and an electrical insulator
- An optimal design is sought for that minimizes size, weight and cost while keeping electric field strength and temperature at acceptable levels

A Strongly Coupled Multiphysics Problem

- 1. Current distribution in the conductor is computed using the *Electric Currents* interface
- 2. Temperature is solved for in the *Heat Transfer* interface
- 3. Oil flow velocity is computed by the *Laminar Flow* interface
- 4. The overall electric field and leakage current distributions are found using a second *Electric Currents* interface node

Solution

Resistive heating power density (W/m³) in the currentcarrying inner conductor

3D representation of the temperature distribution

Solution

2D representation of temperature distribution. Arrows and streamlines denote heat flow

Oil flow streamlines and color coded velocity amplitude

Solution

 Note the high field stress occuring in some very localized regions

- Without the use of FGM these hot spots would cause partial discharges and thermal ageing, eventually leading to electrical breakdown
- Even with FGM applied very careful geometry design optimization is needed

Color coded electric field strength and equipotential curves

Temperature for Different Boundary Conditions

Original model

No heat and oil flow across the upper boundary

Zero oil flow velocity u

© ABB Group

Conclusions

- It has become possible to simulate and predict the electric and thermal stresses in a high voltage bushing
- Transient simulations can also be carried out
- The results are consistent with measurements and test results
- Such computations have become a crucial part of the design optimization
- In a case similar to that shown here, the size of the bushing could be reduced by 30% thanks to the simulations

© ABB Group

