

Engineering Innovations

Simulation of Differential Ion Mobility Spectrometry (DMS)

By: Francy L. Sinatra

Excerpt from the Proceedings of the 2012 COMSOL Conference in Boston

This Document is Draper Proprietary

Background

- Radioisotope analysis is typically studied by ICP-MS or TIMS
- We are developing a lab-based DMS-MS system to assess DMS as a pre-filter for MS-based radionuclide detection
- This approach enhances the detection accuracy of the system as a result of:
 - Selection of targeted ion species before introduction in the MS
 - Provides additional orthogonal chemical information for targeted species

DMS / MS Design

This Work

- A preliminary investigation of DMS modeling using COMSOL and SIMION software packages
 - Assessment of parameters for DMS instrumentation development such as channel length and voltage amplitude
- This work anticipates the need to optimize instrument design for maximum resolution of isobaric compounds of interest to nuclear forensic applications

DMS Principle

Model Set-up

Model Parameters

	Parameters	Values
μ	Fluid Viscosity	1.85 x 10⁻⁵ Pa*s
ρ	Fluid Density	1.205 kg/m ³
Z	Charge	1
Ν	Number Density (Molecules / Unit V)	2.5e ²⁵ m ⁻³
Vdc	Compensation Voltage	-1.35
D	Diffusion Coefficient	4.97e ⁻⁶ m ² /s
K ₀	Mobility for Low Electric Field	2.425e ⁻⁹ s*mol/kg
U ₀	Inflow Velocity	10 m/s

Equations Used

Ion Mobility

$$K\left(\frac{E}{N}\right) = K\left(0\right) \left[1 + \alpha_2 \cdot \left(\frac{E}{N}\right)^2 + \alpha_4 \cdot \left(\frac{E}{N}\right)^4 + \cdots\right]$$

AC Voltage

$$V_D(t) = \frac{V_{iD}}{3} \left[2\sin(wt) + \sin\left(2wt - \frac{\pi}{2}\right) \right]$$

$$V_{iD} = 1000 \text{ V}$$

$$\omega = 2 \text{ MHz}^*(2\pi)$$

COMSOL – Ion Micro Oscillations

COMSOL – Ion Trajectory

DMMP+ lons

- Carrier media is air
- Ion packets reach end of channel after 1.5 ms
- Voltage and frequency optimized for given ion species

SIMION – Particle Trajectory

Voltage Amplitude Comparison

Channel Length Comparison

Compensation Voltage

of ions : 100 Mass/Charge ratio of ion: 101 (DMMPH⁺) Voltage Amplitude 750 V

References

- http://ijims.ansci.de/pdf/9/1/Nazarov_IJIMS_9_2006_1_40_44.pdf
 Erkinjon G. Nazarov, Raanan A. Miller, Stephen L. Coy, Evgeny Krylov, Sergey I. Kryuchkov. Software Simulation of Ion Motion in DC and AC Electric Fields Including Fluid-Flow Effects.
- Satendra Prasad, Keqi Tang, David Manura, Dimitris Papanastasiou and Richard D. Smith. Simulation of Ion Motion in FAIMS through Combined Use of SIMION and Modified SDS. Anal. Chem. 2009.
- Raquel Cumeras, Isabel Gracia, Eduard Figueras, Luis Fonseca, Joaquin Sandander, Marc Salleras, carlos Calaza, Neus Sabate, Carles Cane. Modellinga P-FAIMS with multiphyics FEM. J.Math. Chem. 2012.
- Xu, J. & Liu, Y. Monte Carlo simulation of ion transport in non-linear ion mobility spectrometry. International Journal for Ion Mobility Spectrometry 12, 149–156 (2009).

