

Modeling the Squeeze Flow of a Thermoplastic Composite Tape During Forming.

Arthur Levy, Gilles Philippe Picher Martel and Pascal Hubert McGill University - Montreal

Excerpt from the Proceedings of the 2012 COMSOL Conference in Boston

Structures and Composite Materials Laboratory

Composite Materials

Example of Huge part

Autoclave or oven curing is expensive or even impossible

Thermoplastic Composites

No need for Cure

From the Tape to the Part

Goal : understanding the effect of pressure and temperature on the forming. **Methods** : modeling the squeeze flow of a single tape.

Outlines

- Experiment
- Modeling
- Implementation in COMSOL
- Results
- Discussion

Experiment

COMSOL – modules used

COMSOL – Fluid flow specificity

Results – Heat Transfer

11

Results – Squeeze Flow

F = 2224N

12

Discussion

Experimental Data : Obtained with an in-house setup [Picher Martel & Hubert 2012]

Finite Element Data : Presented COMSOL results

Analytical Data : obtained using lubrication assumption and solving the ODE in MATLAB [Schuler & Advani 1996]

Conclusion & Future Work

Heat Transfer is fast : isothermal assumption makes sense.

Analytical and FEM solution correlate. Lubrication assumption is valid.

Experimental data are NOT recovered. Additional work is needed on:

- Behavior (not fluid ?)
- Modeling (slippage ?)

